已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodal Knowledge Graph Embedding With Missing Data Integration

计算机科学 嵌入 知识图 图论 图形 数据集成 人工智能 理论计算机科学 数据挖掘 数学 组合数学
作者
Yuan Liang
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tcss.2024.3385672
摘要

In real-world network scenarios, modal absence may be caused by various factors, such as sensor damage, data corruption, and human errors in recording. Effectively integrating multimodal missing data still poses significant challenges. Different combinations of missing modes can form feature sets of inconsistent dimensions and quantities. Additionally, effectively merging multimodal data requires a thorough understanding of specific modal information and intermodal interactions. The abundance of missing data can significantly reduce the sample set size, leading to learning interaction features from only a few samples. Moreover, there is a lack of clear correspondence between heterogeneous data from different sources. To address these issues, we focus our research on multimodal knowledge graph scenarios with different types of structures and content and develop a new knowledge graph embedding method. First, we use three embedding components to automatically extract feature vector representations of items from the structural content, textual content, and visual content of the knowledge graph. Then, we divide the dataset into several modal groups and model these modal groups using a multilayer network structure, with each multilayer network corresponding to a specific multimodal combination. Subsequently, we construct corresponding multilayer network projection layers and propose a two-stage GAT-based transfer learning framework for the projection layers, in which the extracted incomplete multimodal information and intermodal interaction information are integrated and mapped to a low-dimensional space. Finally, we not only theoretically prove the feasibility of the proposed method but also validate its effectiveness through extensive comparative experiments on multiple datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bee发布了新的文献求助10
1秒前
犹豫的星星完成签到,获得积分10
4秒前
云木完成签到 ,获得积分10
5秒前
8秒前
咕噜咕噜完成签到 ,获得积分10
9秒前
11秒前
Bee完成签到,获得积分10
14秒前
bkagyin应助鹤唳采纳,获得10
15秒前
萍123完成签到,获得积分10
15秒前
xiaolang2004完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
秋山月弦完成签到,获得积分10
22秒前
22秒前
贪玩手链发布了新的文献求助10
24秒前
24秒前
ograss发布了新的文献求助10
25秒前
26秒前
27秒前
鹤唳发布了新的文献求助10
28秒前
28秒前
午夜时分收病人完成签到,获得积分10
29秒前
31秒前
无眠宇宙发布了新的文献求助10
32秒前
33秒前
tly发布了新的文献求助10
34秒前
wdfgggh发布了新的文献求助20
35秒前
Jambo发布了新的文献求助10
36秒前
37秒前
林狗发布了新的文献求助10
39秒前
西贝完成签到,获得积分10
40秒前
鹤唳完成签到,获得积分10
43秒前
Jambo完成签到,获得积分10
43秒前
木子李完成签到,获得积分10
45秒前
tly完成签到,获得积分20
50秒前
Owen应助萍123采纳,获得10
52秒前
1分钟前
1分钟前
la完成签到,获得积分20
1分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397656
求助须知:如何正确求助?哪些是违规求助? 3006755
关于积分的说明 8822371
捐赠科研通 2693996
什么是DOI,文献DOI怎么找? 1475582
科研通“疑难数据库(出版商)”最低求助积分说明 682482
邀请新用户注册赠送积分活动 675884