MVSI-Net: Multi-view attention and multi-scale feature interaction for brain tumor segmentation

计算机科学 特征(语言学) 网(多面体) 分割 比例(比率) 人工智能 模式识别(心理学) 数学 地图学 地理 哲学 语言学 几何学
作者
Junding Sun,Ming Xi Hu,Xiaosheng Wu,Chaosheng Tang,Husam Lahza,Shui‐Hua Wang,Yudong Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:95: 106484-106484 被引量:2
标识
DOI:10.1016/j.bspc.2024.106484
摘要

Brain tumor segmentation using MRI remains a challenging task due to the high incidence and complexity of gliomas. The irregular variations in tumor location, size, shape, and unclear edge contours of diverse tumor categories contribute to subpar segmentation accuracy. To address these issues, we propose MVSI-Net, a novel MRI brain tumor segmentation method that integrates a multi-view attention mechanism and multi-scale feature interaction into the UNet architecture. Our approach proposes a multi-view attention mechanism that captures global and local features from three different perspectives: channel, content, and position. This mechanism facilitates the localization of the target region and enhances feature representation in lesion areas. Additionally, we design a multi-scale feature interaction module that selectively extracts valuable information from multiple receptive fields of varying sizes, promoting cross-dimensional interaction. As a result, our method enables precise segmentation of the edge contours of different tumor categories. To evaluate the performance of MVSI-Net, we conducted experiments on three widely used datasets: BraTs 2019, BraTs 2020, and BraTs 2021. The experimental results demonstrate that our proposed method outperforms similar approaches in brain tumor segmentation accuracy. In conclusion, our study presents a novel and effective MRI brain tumor segmentation method that addresses the challenges posed by gliomas. However, our model still has certain limitations. Firstly, the model has not been applied in clinical experiments, and there may be challenges in terms of accuracy in certain complex cases. Secondly, further exploration is required to assess the model's generalization capability beyond specific medical image datasets. Moving forward, we plan to address these limitations in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼呼哈哈完成签到,获得积分10
刚刚
刚刚
Joe完成签到,获得积分10
3秒前
4秒前
4秒前
rasmus完成签到 ,获得积分10
4秒前
6秒前
6秒前
8秒前
GK发布了新的文献求助10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
百无禁忌应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
LARS应助科研通管家采纳,获得10
9秒前
高大凌寒应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
我是老大应助馒头采纳,获得30
9秒前
华仔应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
10秒前
安逸1发布了新的文献求助10
11秒前
llxie发布了新的文献求助10
12秒前
顾矜应助小罗采纳,获得10
14秒前
15秒前
研友_85Ymz8发布了新的文献求助20
15秒前
llxie完成签到,获得积分10
18秒前
CodeCraft应助安逸1采纳,获得10
18秒前
Dr_Stars完成签到,获得积分10
20秒前
zhuanghj5完成签到 ,获得积分10
21秒前
hezi完成签到,获得积分10
22秒前
FashionBoy应助GZX采纳,获得10
22秒前
直率的雪晴完成签到,获得积分10
22秒前
tzy完成签到,获得积分10
24秒前
24秒前
蛋黄苏完成签到,获得积分10
24秒前
25秒前
天天快乐应助韩丙宇采纳,获得10
26秒前
27秒前
zhuanghj5发布了新的文献求助10
29秒前
李健应助starcatcher采纳,获得10
30秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816530
关于积分的说明 7913032
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388