已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recognition of Longitudinal Cracks on Slab Surfaces Based on Particle Swarm Optimization and eXtreme Gradient Boosting Model

粒子群优化 恒虚警率 梯度升压 主成分分析 计算机科学 共轭梯度法 Boosting(机器学习) 厚板 人工智能 材料科学 结构工程 机器学习 工程类 算法 随机森林
作者
Yu Liu,Jiang Lai,Jing Shi,Jiabin Liu,Guohui Li,Zhaofeng Wang,Zhi Zhang
出处
期刊:Processes [MDPI AG]
卷期号:12 (6): 1087-1087 被引量:1
标识
DOI:10.3390/pr12061087
摘要

Longitudinal cracks are a common defect on the surface of continuous casting slabs, and cause increases in additional processing costs or long-time interruptions. The accurate identification of surface longitudinal cracks is helpful to ensure the casting process is adjusted in time, which significantly improves the quality of slabs. In this research, the typical temperature characteristics of thermocouples at the position of longitudinal cracks and their adjacent locations were extracted. The principal component analysis (PCA) method was used to reduce the dimensions of these characteristics to remove the redundant information. The particle swarm optimization (PSO) method was introduced to optimize the parameter. On this basis, a recognition model of surface longitudinal cracks was established, based on a particle swarm optimization–eXtreme gradient boosting (XGBOOST) model. Finally, this model was trained and tested using longitudinal crack and non-longitudinal crack samples and compared with the decision tree, the gradient boosting decision tree (GBDT) and XGBOOST models. The test results showed that PSO-XGBOOST had the best identification performance in all evaluation indexes. The accuracy, F1 score and alarm rate results were 95.8%, 92.3% and 100%, respectively, and the false alarm rate was as low as 5.5%. The research results provide a theoretical basis and a reliable model for surface longitudinal crack identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽的真完成签到,获得积分10
刚刚
Pepsi完成签到,获得积分10
刚刚
Ava应助阿哈采纳,获得10
1秒前
林淼完成签到 ,获得积分10
1秒前
wanci应助奔跑的小鹰采纳,获得10
1秒前
3秒前
4秒前
悠悠鹿鸣发布了新的文献求助10
4秒前
4秒前
4秒前
yanhan2009完成签到 ,获得积分10
5秒前
bella完成签到,获得积分10
6秒前
香蕉傲之发布了新的文献求助10
6秒前
llnysl完成签到 ,获得积分10
7秒前
黄林旋发布了新的文献求助10
10秒前
11秒前
yuyuan完成签到,获得积分10
13秒前
wy完成签到 ,获得积分10
15秒前
16秒前
JJiebond完成签到 ,获得积分10
20秒前
彪壮的银耳汤完成签到 ,获得积分10
20秒前
cctv18应助yolo采纳,获得30
20秒前
20秒前
彭于晏应助时光不染采纳,获得30
22秒前
研友_Z30GJ8完成签到 ,获得积分0
24秒前
24秒前
JamesPei应助嘟噜采纳,获得10
26秒前
pluto应助JJiebond采纳,获得10
26秒前
jianghs完成签到,获得积分0
26秒前
27秒前
褚幻香完成签到 ,获得积分10
27秒前
28秒前
燕子完成签到 ,获得积分10
28秒前
29秒前
31秒前
Cecilia发布了新的文献求助10
32秒前
32秒前
xxh发布了新的文献求助10
33秒前
fsznc完成签到 ,获得积分0
34秒前
34秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422795
求助须知:如何正确求助?哪些是违规求助? 3023097
关于积分的说明 8903417
捐赠科研通 2710488
什么是DOI,文献DOI怎么找? 1486520
科研通“疑难数据库(出版商)”最低求助积分说明 687075
邀请新用户注册赠送积分活动 682312