Recognition of Longitudinal Cracks on Slab Surfaces Based on Particle Swarm Optimization and eXtreme Gradient Boosting Model

粒子群优化 恒虚警率 梯度升压 主成分分析 计算机科学 共轭梯度法 Boosting(机器学习) 厚板 人工智能 材料科学 结构工程 机器学习 工程类 算法 随机森林
作者
Yu Liu,Jiang Lai,Jing Shi,Jiabin Liu,Guohui Li,Zhaofeng Wang,Zhi Zhang
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:12 (6): 1087-1087 被引量:1
标识
DOI:10.3390/pr12061087
摘要

Longitudinal cracks are a common defect on the surface of continuous casting slabs, and cause increases in additional processing costs or long-time interruptions. The accurate identification of surface longitudinal cracks is helpful to ensure the casting process is adjusted in time, which significantly improves the quality of slabs. In this research, the typical temperature characteristics of thermocouples at the position of longitudinal cracks and their adjacent locations were extracted. The principal component analysis (PCA) method was used to reduce the dimensions of these characteristics to remove the redundant information. The particle swarm optimization (PSO) method was introduced to optimize the parameter. On this basis, a recognition model of surface longitudinal cracks was established, based on a particle swarm optimization–eXtreme gradient boosting (XGBOOST) model. Finally, this model was trained and tested using longitudinal crack and non-longitudinal crack samples and compared with the decision tree, the gradient boosting decision tree (GBDT) and XGBOOST models. The test results showed that PSO-XGBOOST had the best identification performance in all evaluation indexes. The accuracy, F1 score and alarm rate results were 95.8%, 92.3% and 100%, respectively, and the false alarm rate was as low as 5.5%. The research results provide a theoretical basis and a reliable model for surface longitudinal crack identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
仲夏夜之梦完成签到,获得积分10
6秒前
calm完成签到,获得积分10
7秒前
吃猫的鱼发布了新的文献求助10
12秒前
碧蓝的黑猫完成签到,获得积分10
13秒前
小二郎应助吱吱采纳,获得10
14秒前
GGbond完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
20秒前
zhaoming完成签到 ,获得积分10
21秒前
zzw完成签到,获得积分10
21秒前
香蕉觅云应助娇气的背包采纳,获得10
22秒前
junhaowang完成签到 ,获得积分10
23秒前
搜集达人应助科研通管家采纳,获得10
24秒前
xzy998应助科研通管家采纳,获得10
24秒前
chelsea完成签到,获得积分10
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
TaoJ应助科研通管家采纳,获得10
24秒前
xzy998应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
25秒前
25秒前
yyyyyyyyjt发布了新的文献求助10
26秒前
chenxuuu发布了新的文献求助10
26秒前
砼砼发布了新的文献求助10
26秒前
yuan完成签到,获得积分10
27秒前
xiaokalami发布了新的文献求助10
28秒前
杨雨帆发布了新的文献求助10
29秒前
yuan发布了新的文献求助10
31秒前
32秒前
32秒前
梅倪完成签到,获得积分10
33秒前
华仔应助777采纳,获得10
34秒前
羊羊完成签到 ,获得积分10
34秒前
鱼鱼完成签到 ,获得积分10
35秒前
37秒前
李巧儿发布了新的文献求助10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967