Construction and Verification of Urinary Tract Infection Prediction Model for Hospitalized Rehabilitation Patients with Spinal Cord Injury

医学 列线图 脊髓损伤 泌尿系统 逻辑回归 脊髓 接收机工作特性 回顾性队列研究 外科 内科学 精神科
作者
Fangfang Zhao,Lixiang Zhang,Xia Chen,Mengling Lei,Liai Sun,Lina Ma,Cheng Dang Wang
出处
期刊:World Neurosurgery [Elsevier]
卷期号:188: e396-e404 被引量:1
标识
DOI:10.1016/j.wneu.2024.05.122
摘要

To explore the influencing factors of urinary tract infection in hospitalized patients with spinal cord injury, and to construct and verify the nomogram prediction model. This study is a retrospective cohort study. From January 2017 to March 2022, 558 patients with spinal cord injury admitted to the Department of Rehabilitation Medicine of a tertiary hospital in Anhui Province, China were selected as the research objects, and they were randomly divided into training group (n=390) and verification group (n=168) according to the ratio of 7: 3, and clinical data including socio-demographic characteristics, disease-related data and laboratory examination data were collected. Univariate analysis and multivariate Logistic regression were used to analyze the influencing factors of urinary tract infection in hospitalized patients with spinal cord injury. Based on this, a nomogram prediction model was constructed with the use of R software, and the risk prediction efficiency of the nomogram model was verified by the receiver operating characteristic(ROC) curve and calibration curve. Logistic regression analysis showed that ASIA-E grade (compared with ASIA-A grade) was an independent protective factor for urinary tract infection in hospitalized patients with spinal cord injury (OR<1, P<0.05), while white blood cell count and indwelling catheter were independent risk factors for urinary tract infection in hospitalized patients with spinal cord injury (OR>1, P<0.05). Based on this, a nomogram risk predictive model for predicting urinary tract infection in hospitalized rehabilitation patients with spinal cord injury was constructed, which was proved to have good predictive efficiency. In the training group and the verification group, the area under the ROC curve(AUC) of the nomogram model is 0.808 and 0.767, and the 95%CI of the AUC of the nomogram in the training group and the verification group is 0.760∼0.856 and 0.688∼0.845, indicating the nomogram model has good discrimination. According to the calibration curve, the prediction probability of the nomogram model and the actual frequency of urinary tract infection in the training group and the verification group are in good consistency, and the results of the Hosmer-Lemeshow bias test also suggest that the nomogram model has good calibration degree in both the training group and the verification group (P=0.329, 0.067). ASIA classification level, white blood cell count and indwelling catheter are independent influencing factors of urinary tract infection in hospitalized patients with spinal cord injury. The nomogram prediction model based on the above factors can simply and effectively predict the risk of urinary tract infection in hospitalized patients with spinal cord injury, which is helpful for clinical medical staff to identify high-risk groups early and implement prevention, treatment and nursing strategies in time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY完成签到,获得积分10
1秒前
思源应助科研小白采纳,获得10
1秒前
付加硕发布了新的文献求助10
1秒前
ozx12345abc发布了新的文献求助20
2秒前
阿杰发布了新的文献求助10
2秒前
3秒前
认真真真真真完成签到,获得积分10
3秒前
搜集达人应助大妈采纳,获得10
3秒前
帅气的东蒽完成签到,获得积分10
3秒前
lkyh9发布了新的文献求助10
4秒前
欢呼的茗茗完成签到 ,获得积分0
5秒前
Lucas应助YY采纳,获得30
5秒前
szp完成签到 ,获得积分10
5秒前
6秒前
嘟嘟发布了新的文献求助10
6秒前
6秒前
juju完成签到,获得积分10
6秒前
大胆班完成签到,获得积分10
6秒前
7秒前
阳仔发布了新的文献求助10
7秒前
CipherSage应助桃李采纳,获得10
8秒前
8秒前
zhabgyucheng发布了新的文献求助10
9秒前
早早发布了新的文献求助10
9秒前
付加硕完成签到,获得积分10
9秒前
9秒前
花凉完成签到,获得积分10
9秒前
10秒前
dddd发布了新的文献求助10
11秒前
11秒前
11秒前
xzl完成签到,获得积分10
11秒前
xgx984发布了新的文献求助10
11秒前
ouffuu发布了新的文献求助10
12秒前
传奇3应助wwbb采纳,获得10
12秒前
情怀应助芳芳采纳,获得10
12秒前
怡然的伊完成签到,获得积分10
13秒前
似风完成签到 ,获得积分10
13秒前
Feeling完成签到,获得积分10
13秒前
陈晓曦发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351276
求助须知:如何正确求助?哪些是违规求助? 4484386
关于积分的说明 13958842
捐赠科研通 4383846
什么是DOI,文献DOI怎么找? 2408681
邀请新用户注册赠送积分活动 1401233
关于科研通互助平台的介绍 1374752