MixUNet: A lightweight medical image segmentation network capturing multidimensional semantic information

计算机科学 分割 人工智能 图像(数学) 情报检索 计算机视觉 模式识别(心理学)
作者
Y Chen,Xiaoqian Zhang,Youdong He,Lifan Peng,Lei Pu,Feng Sun
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:96: 106513-106513 被引量:1
标识
DOI:10.1016/j.bspc.2024.106513
摘要

The efficient segmentation of medical image is of great significance for clinical diagnosis. Recently, TransUNet has achieved great success in medical image segmentation by effectively fusing Convolutional Neural Networks (CNN) and Vision Transformer (ViT) to accomplish the extraction of local and global information. However, since TransUNet is designed as a stitching of CNN and ViT framework level, it has the following problems to be solved: 1) only local and relatively global spatial features of images are extracted; 2) the direct introduction of ViT brings the disadvantages of not easy training and high computational overhead. Therefore, in this work, we propose Mixblock, a hybrid encoder that effectively fuses the superiority of CNN and ViT and is capable of extracting multidimensional high-level semantic information of images instead of being limited to local and global spatial features. Based on this, we design a UNet-like method MixUNet for medical image segmentation, which is a concise and efficient baseline network. Specifically, MixUNet is able to converge after less training without any pre-training, and its number of parameters and computation are only 3.17% and 4.99% of those of TransUNet. In addition, we creatively introduce frequency domain information on skip connection to eliminate the semantic ambiguity between the encoder and decoder, which provides a new perspective for medical image segmentation. Finally, we perform extensive experiments on three publicly available medical image datasets. Experimental results show that MixUNet has significant superiority in segmentation performance, model complexity, and robustness compared to state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzz完成签到,获得积分20
刚刚
怪兽小泥巴完成签到,获得积分10
刚刚
妹妹发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
3秒前
daheeeee发布了新的文献求助10
4秒前
此晴可待完成签到,获得积分10
4秒前
shuangma完成签到,获得积分10
4秒前
DAI123发布了新的文献求助10
4秒前
goodsheep完成签到 ,获得积分10
5秒前
5秒前
5秒前
南木_完成签到,获得积分10
7秒前
8秒前
超帅连虎完成签到,获得积分10
8秒前
如意的冰双完成签到 ,获得积分10
9秒前
Dully97给Dully97的求助进行了留言
10秒前
10秒前
四辈完成签到,获得积分10
11秒前
妹妹完成签到,获得积分20
12秒前
fd163c应助Advance.Cheng采纳,获得10
12秒前
LaTeXer应助自由老头采纳,获得100
12秒前
崔浩宇发布了新的文献求助10
14秒前
NexusExplorer应助fiell采纳,获得10
14秒前
勤劳的乐安完成签到,获得积分10
15秒前
kitty发布了新的文献求助20
16秒前
kiltorh完成签到,获得积分10
16秒前
Orange应助平常的路人采纳,获得10
16秒前
17秒前
风犬少年完成签到,获得积分10
17秒前
17秒前
懒懒洋洋洋完成签到 ,获得积分10
17秒前
18秒前
詹密完成签到,获得积分10
18秒前
积极含羞草完成签到,获得积分10
19秒前
故事的小红花完成签到,获得积分10
19秒前
QWDSA完成签到,获得积分10
20秒前
龙华之士发布了新的文献求助10
21秒前
21秒前
北冥有鱼完成签到,获得积分10
23秒前
Yddear发布了新的文献求助10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048