MixUNet: A lightweight medical image segmentation network capturing multidimensional semantic information

计算机科学 分割 人工智能 图像(数学) 情报检索 计算机视觉 模式识别(心理学)
作者
Y Chen,Xiaoqian Zhang,Youdong He,Lifan Peng,Lei Pu,Feng Sun
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:96: 106513-106513 被引量:1
标识
DOI:10.1016/j.bspc.2024.106513
摘要

The efficient segmentation of medical image is of great significance for clinical diagnosis. Recently, TransUNet has achieved great success in medical image segmentation by effectively fusing Convolutional Neural Networks (CNN) and Vision Transformer (ViT) to accomplish the extraction of local and global information. However, since TransUNet is designed as a stitching of CNN and ViT framework level, it has the following problems to be solved: 1) only local and relatively global spatial features of images are extracted; 2) the direct introduction of ViT brings the disadvantages of not easy training and high computational overhead. Therefore, in this work, we propose Mixblock, a hybrid encoder that effectively fuses the superiority of CNN and ViT and is capable of extracting multidimensional high-level semantic information of images instead of being limited to local and global spatial features. Based on this, we design a UNet-like method MixUNet for medical image segmentation, which is a concise and efficient baseline network. Specifically, MixUNet is able to converge after less training without any pre-training, and its number of parameters and computation are only 3.17% and 4.99% of those of TransUNet. In addition, we creatively introduce frequency domain information on skip connection to eliminate the semantic ambiguity between the encoder and decoder, which provides a new perspective for medical image segmentation. Finally, we perform extensive experiments on three publicly available medical image datasets. Experimental results show that MixUNet has significant superiority in segmentation performance, model complexity, and robustness compared to state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccang发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
深情安青应助tyy采纳,获得10
1秒前
丘比特应助Dale采纳,获得10
1秒前
2秒前
2秒前
蛋挞发布了新的文献求助10
2秒前
hhchhcmxhf完成签到,获得积分10
2秒前
Jene完成签到 ,获得积分20
2秒前
钮卿发布了新的文献求助10
3秒前
齐天完成签到 ,获得积分10
3秒前
4秒前
4秒前
三金发布了新的文献求助10
5秒前
Scarecrow发布了新的文献求助10
5秒前
沉静的松发布了新的文献求助10
5秒前
慈祥的爆米花完成签到,获得积分10
5秒前
大好河山发布了新的文献求助10
5秒前
rainbow5432完成签到 ,获得积分10
7秒前
7秒前
guyutian完成签到,获得积分10
7秒前
8秒前
吴1完成签到,获得积分10
8秒前
Icy发布了新的文献求助100
8秒前
9秒前
Owen应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
10秒前
阳光的问雁完成签到,获得积分20
10秒前
ll应助科研通管家采纳,获得10
10秒前
鹿lu应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969398
求助须知:如何正确求助?哪些是违规求助? 3514239
关于积分的说明 11173064
捐赠科研通 3249531
什么是DOI,文献DOI怎么找? 1794934
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804827