MixUNet: A lightweight medical image segmentation network capturing multidimensional semantic information

计算机科学 分割 人工智能 图像(数学) 情报检索 计算机视觉 模式识别(心理学)
作者
Y Chen,Xiaoqian Zhang,Youdong He,Lifan Peng,Lei Pu,Feng Sun
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:96: 106513-106513 被引量:1
标识
DOI:10.1016/j.bspc.2024.106513
摘要

The efficient segmentation of medical image is of great significance for clinical diagnosis. Recently, TransUNet has achieved great success in medical image segmentation by effectively fusing Convolutional Neural Networks (CNN) and Vision Transformer (ViT) to accomplish the extraction of local and global information. However, since TransUNet is designed as a stitching of CNN and ViT framework level, it has the following problems to be solved: 1) only local and relatively global spatial features of images are extracted; 2) the direct introduction of ViT brings the disadvantages of not easy training and high computational overhead. Therefore, in this work, we propose Mixblock, a hybrid encoder that effectively fuses the superiority of CNN and ViT and is capable of extracting multidimensional high-level semantic information of images instead of being limited to local and global spatial features. Based on this, we design a UNet-like method MixUNet for medical image segmentation, which is a concise and efficient baseline network. Specifically, MixUNet is able to converge after less training without any pre-training, and its number of parameters and computation are only 3.17% and 4.99% of those of TransUNet. In addition, we creatively introduce frequency domain information on skip connection to eliminate the semantic ambiguity between the encoder and decoder, which provides a new perspective for medical image segmentation. Finally, we perform extensive experiments on three publicly available medical image datasets. Experimental results show that MixUNet has significant superiority in segmentation performance, model complexity, and robustness compared to state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
KEyanba完成签到,获得积分10
5秒前
www完成签到,获得积分10
6秒前
大力小萱发布了新的文献求助20
7秒前
8秒前
跳跃念文发布了新的文献求助10
8秒前
我唉科研完成签到,获得积分10
9秒前
唔西迪西完成签到,获得积分10
9秒前
10秒前
小九的呀完成签到 ,获得积分10
10秒前
Grace0610应助无尘采纳,获得10
10秒前
11秒前
YanDongXu完成签到,获得积分10
11秒前
talksilence完成签到,获得积分10
13秒前
wodi发布了新的文献求助10
14秒前
星辰大海应助Chocolate采纳,获得10
14秒前
等她发布了新的文献求助10
15秒前
15秒前
15秒前
仁爱十三发布了新的文献求助10
15秒前
15秒前
黄花发布了新的文献求助10
16秒前
小期待完成签到 ,获得积分10
17秒前
青牛发布了新的文献求助10
20秒前
freedom完成签到,获得积分20
21秒前
22秒前
彤彤完成签到 ,获得积分10
23秒前
24秒前
penghuolong完成签到,获得积分10
24秒前
gswwc完成签到,获得积分10
25秒前
郝田田完成签到,获得积分10
25秒前
xuan21发布了新的文献求助10
26秒前
脑洞疼应助等她采纳,获得10
27秒前
落后的楼房完成签到,获得积分10
27秒前
小二郎应助受伤的平安采纳,获得10
28秒前
lwa完成签到,获得积分10
29秒前
李健应助咕噜噜采纳,获得20
30秒前
Explorer3号完成签到,获得积分10
30秒前
34秒前
wodi关注了科研通微信公众号
35秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816187
关于积分的说明 7911845
捐赠科研通 2475930
什么是DOI,文献DOI怎么找? 1318423
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388