生命周期评估
碳纤维
生产(经济)
钠
环境科学
碳循环
离子
生化工程
化学
环境化学
工艺工程
材料科学
工程类
生态学
生物
有机化学
生态系统
复合数
经济
复合材料
宏观经济学
作者
Huiting Liu,Manuel Baumann,Hyein Moon,Xiang Zhang,Xiaoming Dou,Maider Zarrabeitia,Eleonora Crenna,Roland Hischier,Stefano Passerini,Niklas von der Aßen,Marcel Weil
标识
DOI:10.1016/j.cej.2024.153410
摘要
This paper aims to address research gaps surrounding the environmental impact of Hard Carbon (HC) production by conducting a Life Cycle Assessment (LCA) based on data from two laboratories with differing backgrounds and scenarios. HC is commonly used as anode material for sodium-ion batteries, a potentially sustainable and cost-efficient alternative for lithium-ion batteries. The study identifies environmentally sustainable routes for HC synthesis by comparing various biomass and synthesis pathways. The study reveals that the energy consumption of the pyrolysis process is the primary contributor to the environmental footprint of lab-scale HC production. A prospective LCA is performed by upscaling the laboratory processes to pilot- and industrial scale based on expert judgement and assumptions on energy and material balance. The results show that the environmental profile of HC can be significantly improved when the production scale is expanded. At large production scales, HC shows great potential to be used as a counterpart to graphite in future battery systems. However, direct emissions, such as methane, and the depletion of materials, such as argon and acid, become more critical to the environmental footprint, highlighting the need for energy recovery, emission treatment strategies, and more efficient use of materials. This work provides a framework for future LCA studies of HC, highlighting the limitations of simplified upscaling. It also provides a foundation for developing sustainable energy storage systems, thereby contributing to more informed decision-making in HC industrial production.
科研通智能强力驱动
Strongly Powered by AbleSci AI