Explainable recommender system directed by reconstructed explanatory factors and multi‐modal matrix factorization

情态动词 推荐系统 矩阵分解 因式分解 计算机科学 基质(化学分析) 人工智能 算法 情报检索 物理 材料科学 特征向量 量子力学 复合材料 高分子化学
作者
T. T. Chang,Zhixia Zhang,Xingjuan Cai
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
标识
DOI:10.1002/cpe.8208
摘要

Summary Matrix factorization (MF)‐based recommender systems (RSs) as black‐box models fail to provide explanations for the recommended items. While some models attain a degree of explainability by integrating neighborhood algorithms, which compute explainability based on the preferences of proximate users, they overlook the contribution of the subjective preferences of the target user to enhancing model explainability, resulting in suboptimal model explainability. To address this problem, an explainable RS directed by reconstructed explanatory factors and multi‐modal matrix factorization (ERS‐REFMMF) is proposed. By integrating users' subjective sentiment and preference features into the rating matrix to form a multi‐modal matrix, ERS‐REFMMF utilizes the Funk‐singular value decomposition method at the foundational layer to decompose the multi‐modal matrix and generate a candidate item set. At the upper layer, explainability is constructed based on the target user's subjective preferences and latent features derived from MF, and the final recommended list is optimized for accuracy, diversity, novelty, and explainability through multi‐objective optimization algorithms. ERS‐REFMMF models around users' explicit preferences and latent associations, reconstructs explainability with hybrid factors, and enhances overall performance through a many‐objective optimization algorithm. Experimental results on real datasets demonstrate that the proposed model is competitive in both phases compared to existing recommendation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
風衣发布了新的文献求助10
4秒前
5秒前
5秒前
wxy发布了新的文献求助10
6秒前
Dou_Xiaowen发布了新的文献求助10
7秒前
zuo发布了新的文献求助10
7秒前
zhizhi发布了新的文献求助30
7秒前
halo完成签到 ,获得积分10
8秒前
ljl343完成签到 ,获得积分10
11秒前
14秒前
yyyyyyy完成签到,获得积分10
15秒前
fairyinn完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
科研通AI2S应助杨yang采纳,获得10
17秒前
仇书竹完成签到,获得积分10
17秒前
菠萝蜜完成签到 ,获得积分10
18秒前
18秒前
武雨寒发布了新的文献求助10
18秒前
干饭大王应助坦率的傲云采纳,获得10
19秒前
19秒前
fairyinn发布了新的文献求助10
19秒前
不吃鱼发布了新的文献求助10
20秒前
Shennnn发布了新的文献求助10
20秒前
yyyyyyy发布了新的文献求助10
20秒前
DueR完成签到 ,获得积分10
21秒前
刻苦的黑米完成签到,获得积分10
22秒前
22秒前
cc完成签到 ,获得积分10
23秒前
chao完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
科研通AI5应助伶俐的夜南采纳,获得10
26秒前
26秒前
JamesPei应助fafamimireredo采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966822
求助须知:如何正确求助?哪些是违规求助? 3512333
关于积分的说明 11162715
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432