清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Forecasting the potential of global marine shipping carbon emission under artificial intelligence based on a novel multivariate discrete grey model

温室气体 稳健性(进化) 多元统计 计算机科学 人工神经网络 环境科学 运筹学 工程类 人工智能 机器学习 生态学 生物化学 化学 生物 基因
作者
Zirui Zeng,Junwen Xu,Shiwei Zhou,Yufeng Zhao,Yansong Shi
出处
期刊:Marine economics and management [Emerald (MCB UP)]
卷期号:7 (1): 42-66
标识
DOI:10.1108/maem-03-2024-0006
摘要

Purpose To achieve sustainable development in shipping, accurately identifying the impact of artificial intelligence on shipping carbon emissions and predicting these emissions is of utmost importance. Design/methodology/approach A multivariable discrete grey prediction model (WFTDGM) based on weakening buffering operator is established. Furthermore, the optimal nonlinear parameters are determined by Grey Wolf optimization algorithm to improve the prediction performance, enhancing the model’s predictive performance. Subsequently, global data on artificial intelligence and shipping carbon emissions are employed to validate the effectiveness of our new model and chosen algorithm. Findings To demonstrate the applicability and robustness of the new model in predicting marine shipping carbon emissions, the new model is used to forecast global marine shipping carbon emissions. Additionally, a comparative analysis is conducted with five other models. The empirical findings indicate that the WFTDGM (1, N) model outperforms other comparative models in overall efficacy, with MAPE for both the training and test sets being less than 4%, specifically at 0.299% and 3.489% respectively. Furthermore, the out-of-sample forecasting results suggest an upward trajectory in global shipping carbon emissions over the subsequent four years. Currently, the application of artificial intelligence in mitigating shipping-related carbon emissions has not achieved the desired inhibitory impact. Practical implications This research not only deepens understanding of the mechanisms through which artificial intelligence influences shipping carbon emissions but also provides a scientific basis for developing effective emission reduction strategies in the shipping industry, thereby contributing significantly to green shipping and global carbon reduction efforts. Originality/value The multi-variable discrete grey prediction model developed in this paper effectively mitigates abnormal fluctuations in time series, serving as a valuable reference for promoting global green and low-carbon transitions and sustainable economic development. Furthermore, based on the findings of this paper, a grey prediction model with even higher predictive performance can be constructed by integrating it with other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呵呵贺哈完成签到 ,获得积分10
6秒前
6秒前
Raul完成签到 ,获得积分10
16秒前
m赤子心完成签到 ,获得积分10
18秒前
焚心结完成签到 ,获得积分10
21秒前
25秒前
南风完成签到 ,获得积分10
25秒前
调研昵称发布了新的文献求助10
32秒前
明朗完成签到 ,获得积分10
46秒前
脑洞疼应助科研通管家采纳,获得30
55秒前
戚雅柔完成签到 ,获得积分10
56秒前
yan完成签到 ,获得积分10
1分钟前
Will完成签到 ,获得积分10
1分钟前
燕山堂完成签到 ,获得积分10
1分钟前
古炮完成签到 ,获得积分10
1分钟前
平常从蓉完成签到,获得积分10
1分钟前
tingyeh完成签到,获得积分10
1分钟前
握瑾怀瑜完成签到 ,获得积分0
1分钟前
luckygirl完成签到 ,获得积分10
1分钟前
十七完成签到 ,获得积分10
1分钟前
所得皆所愿完成签到 ,获得积分10
1分钟前
张大星完成签到 ,获得积分10
2分钟前
wang5945完成签到 ,获得积分10
2分钟前
土拨鼠完成签到 ,获得积分10
2分钟前
倾卿如玉完成签到 ,获得积分10
2分钟前
安青兰完成签到 ,获得积分10
2分钟前
前夜发布了新的文献求助10
2分钟前
小鱼女侠完成签到 ,获得积分10
3分钟前
齐齐完成签到,获得积分10
3分钟前
su完成签到 ,获得积分10
4分钟前
吕耀炜完成签到,获得积分10
4分钟前
冬去春来完成签到 ,获得积分10
4分钟前
路过完成签到 ,获得积分10
4分钟前
航行天下完成签到 ,获得积分10
4分钟前
脑洞疼应助方之双采纳,获得10
4分钟前
洁净的静芙完成签到 ,获得积分10
5分钟前
龙猫爱看书完成签到,获得积分10
5分钟前
croissante完成签到 ,获得积分10
5分钟前
风秋杨完成签到 ,获得积分10
5分钟前
Gary完成签到 ,获得积分10
5分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167202
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921910
捐赠科研通 2478466
什么是DOI,文献DOI怎么找? 1320348
科研通“疑难数据库(出版商)”最低求助积分说明 632767
版权声明 602442