Forecasting the potential of global marine shipping carbon emission under artificial intelligence based on a novel multivariate discrete grey model

温室气体 稳健性(进化) 多元统计 计算机科学 人工神经网络 环境科学 运筹学 工程类 人工智能 机器学习 生态学 生物化学 生物 基因 化学
作者
Zirui Zeng,Junwen Xu,Shiwei Zhou,Yufeng Zhao,Yansong Shi
出处
期刊:Marine economics and management [Emerald (MCB UP)]
卷期号:7 (1): 42-66
标识
DOI:10.1108/maem-03-2024-0006
摘要

Purpose To achieve sustainable development in shipping, accurately identifying the impact of artificial intelligence on shipping carbon emissions and predicting these emissions is of utmost importance. Design/methodology/approach A multivariable discrete grey prediction model (WFTDGM) based on weakening buffering operator is established. Furthermore, the optimal nonlinear parameters are determined by Grey Wolf optimization algorithm to improve the prediction performance, enhancing the model’s predictive performance. Subsequently, global data on artificial intelligence and shipping carbon emissions are employed to validate the effectiveness of our new model and chosen algorithm. Findings To demonstrate the applicability and robustness of the new model in predicting marine shipping carbon emissions, the new model is used to forecast global marine shipping carbon emissions. Additionally, a comparative analysis is conducted with five other models. The empirical findings indicate that the WFTDGM (1, N) model outperforms other comparative models in overall efficacy, with MAPE for both the training and test sets being less than 4%, specifically at 0.299% and 3.489% respectively. Furthermore, the out-of-sample forecasting results suggest an upward trajectory in global shipping carbon emissions over the subsequent four years. Currently, the application of artificial intelligence in mitigating shipping-related carbon emissions has not achieved the desired inhibitory impact. Practical implications This research not only deepens understanding of the mechanisms through which artificial intelligence influences shipping carbon emissions but also provides a scientific basis for developing effective emission reduction strategies in the shipping industry, thereby contributing significantly to green shipping and global carbon reduction efforts. Originality/value The multi-variable discrete grey prediction model developed in this paper effectively mitigates abnormal fluctuations in time series, serving as a valuable reference for promoting global green and low-carbon transitions and sustainable economic development. Furthermore, based on the findings of this paper, a grey prediction model with even higher predictive performance can be constructed by integrating it with other algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助香蕉梨愁采纳,获得10
1秒前
1秒前
1秒前
郑小完成签到,获得积分10
1秒前
盐焗鸡完成签到 ,获得积分10
2秒前
heher完成签到 ,获得积分10
2秒前
2秒前
追寻的秋玲完成签到 ,获得积分10
3秒前
明理尔丝完成签到 ,获得积分10
3秒前
苦瓜94发布了新的文献求助10
3秒前
美好的弘文完成签到,获得积分10
3秒前
琪小7完成签到,获得积分20
4秒前
5秒前
5秒前
彭于晏应助里朵采纳,获得10
5秒前
my发布了新的文献求助10
6秒前
蟹黄堡bro发布了新的文献求助10
6秒前
LLLLLJJXX发布了新的文献求助10
6秒前
7秒前
xc关闭了xc文献求助
7秒前
7秒前
yuan发布了新的文献求助30
8秒前
张道微发布了新的文献求助10
9秒前
夹竹桃发布了新的文献求助10
10秒前
时尚的秋天完成签到 ,获得积分10
11秒前
小白完成签到 ,获得积分10
12秒前
合适的龙猫关注了科研通微信公众号
12秒前
hh发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
萝卜卜完成签到,获得积分10
13秒前
13秒前
啾咪蜜完成签到,获得积分10
14秒前
HandsomeBoy完成签到 ,获得积分10
14秒前
sun完成签到,获得积分10
15秒前
15秒前
Jasper应助刘星宇采纳,获得30
16秒前
hooh完成签到,获得积分10
16秒前
ding应助YOUNG采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851