Forecasting the potential of global marine shipping carbon emission under artificial intelligence based on a novel multivariate discrete grey model

温室气体 稳健性(进化) 多元统计 计算机科学 人工神经网络 环境科学 运筹学 工程类 人工智能 机器学习 生态学 生物化学 化学 生物 基因
作者
Zirui Zeng,Junwen Xu,Shiwei Zhou,Yufeng Zhao,Yansong Shi
出处
期刊:Marine economics and management [Emerald (MCB UP)]
卷期号:7 (1): 42-66
标识
DOI:10.1108/maem-03-2024-0006
摘要

Purpose To achieve sustainable development in shipping, accurately identifying the impact of artificial intelligence on shipping carbon emissions and predicting these emissions is of utmost importance. Design/methodology/approach A multivariable discrete grey prediction model (WFTDGM) based on weakening buffering operator is established. Furthermore, the optimal nonlinear parameters are determined by Grey Wolf optimization algorithm to improve the prediction performance, enhancing the model’s predictive performance. Subsequently, global data on artificial intelligence and shipping carbon emissions are employed to validate the effectiveness of our new model and chosen algorithm. Findings To demonstrate the applicability and robustness of the new model in predicting marine shipping carbon emissions, the new model is used to forecast global marine shipping carbon emissions. Additionally, a comparative analysis is conducted with five other models. The empirical findings indicate that the WFTDGM (1, N) model outperforms other comparative models in overall efficacy, with MAPE for both the training and test sets being less than 4%, specifically at 0.299% and 3.489% respectively. Furthermore, the out-of-sample forecasting results suggest an upward trajectory in global shipping carbon emissions over the subsequent four years. Currently, the application of artificial intelligence in mitigating shipping-related carbon emissions has not achieved the desired inhibitory impact. Practical implications This research not only deepens understanding of the mechanisms through which artificial intelligence influences shipping carbon emissions but also provides a scientific basis for developing effective emission reduction strategies in the shipping industry, thereby contributing significantly to green shipping and global carbon reduction efforts. Originality/value The multi-variable discrete grey prediction model developed in this paper effectively mitigates abnormal fluctuations in time series, serving as a valuable reference for promoting global green and low-carbon transitions and sustainable economic development. Furthermore, based on the findings of this paper, a grey prediction model with even higher predictive performance can be constructed by integrating it with other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助LR采纳,获得10
1秒前
淡然的衣完成签到,获得积分10
1秒前
梦梦完成签到,获得积分10
1秒前
爆米花应助莉莉子采纳,获得10
1秒前
2秒前
2秒前
2秒前
二十五发布了新的文献求助10
2秒前
rxb发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
灵巧土豆完成签到 ,获得积分10
4秒前
5秒前
胖虎应助研友_Z345g8采纳,获得10
5秒前
pluto应助chenhua5460采纳,获得10
5秒前
务实含羞草完成签到 ,获得积分10
5秒前
晨曦完成签到,获得积分10
5秒前
6秒前
dkun发布了新的文献求助30
6秒前
1111应助Ryan采纳,获得10
7秒前
7秒前
zhenzhen发布了新的文献求助10
8秒前
huahua发布了新的文献求助10
8秒前
anan完成签到,获得积分10
8秒前
ljs发布了新的文献求助10
8秒前
8秒前
8秒前
哈哈哈发布了新的文献求助10
8秒前
8秒前
9秒前
o30发布了新的文献求助10
9秒前
9秒前
充电宝应助XXXX采纳,获得10
9秒前
雪白尔琴发布了新的文献求助10
10秒前
zjzyw完成签到 ,获得积分10
10秒前
绿色催化完成签到,获得积分10
10秒前
爱跳舞的老大爷完成签到,获得积分10
11秒前
Huanglj完成签到,获得积分10
11秒前
爱听歌的树叶完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969383
求助须知:如何正确求助?哪些是违规求助? 3514211
关于积分的说明 11172730
捐赠科研通 3249476
什么是DOI,文献DOI怎么找? 1794909
邀请新用户注册赠送积分活动 875441
科研通“疑难数据库(出版商)”最低求助积分说明 804827