Forecasting the potential of global marine shipping carbon emission under artificial intelligence based on a novel multivariate discrete grey model

温室气体 稳健性(进化) 多元统计 计算机科学 人工神经网络 环境科学 运筹学 工程类 人工智能 机器学习 生态学 生物化学 生物 基因 化学
作者
Zirui Zeng,Junwen Xu,Shiwei Zhou,Yufeng Zhao,Yansong Shi
出处
期刊:Marine economics and management [Emerald (MCB UP)]
卷期号:7 (1): 42-66
标识
DOI:10.1108/maem-03-2024-0006
摘要

Purpose To achieve sustainable development in shipping, accurately identifying the impact of artificial intelligence on shipping carbon emissions and predicting these emissions is of utmost importance. Design/methodology/approach A multivariable discrete grey prediction model (WFTDGM) based on weakening buffering operator is established. Furthermore, the optimal nonlinear parameters are determined by Grey Wolf optimization algorithm to improve the prediction performance, enhancing the model’s predictive performance. Subsequently, global data on artificial intelligence and shipping carbon emissions are employed to validate the effectiveness of our new model and chosen algorithm. Findings To demonstrate the applicability and robustness of the new model in predicting marine shipping carbon emissions, the new model is used to forecast global marine shipping carbon emissions. Additionally, a comparative analysis is conducted with five other models. The empirical findings indicate that the WFTDGM (1, N) model outperforms other comparative models in overall efficacy, with MAPE for both the training and test sets being less than 4%, specifically at 0.299% and 3.489% respectively. Furthermore, the out-of-sample forecasting results suggest an upward trajectory in global shipping carbon emissions over the subsequent four years. Currently, the application of artificial intelligence in mitigating shipping-related carbon emissions has not achieved the desired inhibitory impact. Practical implications This research not only deepens understanding of the mechanisms through which artificial intelligence influences shipping carbon emissions but also provides a scientific basis for developing effective emission reduction strategies in the shipping industry, thereby contributing significantly to green shipping and global carbon reduction efforts. Originality/value The multi-variable discrete grey prediction model developed in this paper effectively mitigates abnormal fluctuations in time series, serving as a valuable reference for promoting global green and low-carbon transitions and sustainable economic development. Furthermore, based on the findings of this paper, a grey prediction model with even higher predictive performance can be constructed by integrating it with other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123zyuyu完成签到,获得积分10
刚刚
刚刚
1秒前
DBY发布了新的文献求助10
1秒前
polar_star完成签到,获得积分10
2秒前
李李李完成签到,获得积分10
2秒前
小丁完成签到,获得积分10
2秒前
2秒前
小G完成签到,获得积分10
3秒前
静谧发布了新的文献求助10
3秒前
咯咯哒发布了新的文献求助10
4秒前
chen发布了新的文献求助10
4秒前
lxy完成签到,获得积分10
5秒前
完美世界应助嗖一诶采纳,获得10
5秒前
禾风完成签到,获得积分10
6秒前
淡然的行完成签到,获得积分10
6秒前
6秒前
7秒前
Liens完成签到,获得积分10
7秒前
7秒前
CodeCraft应助bobo采纳,获得10
7秒前
7秒前
科研通AI5应助CHL5722采纳,获得10
7秒前
Witness发布了新的文献求助10
8秒前
9秒前
laj完成签到,获得积分20
9秒前
小蘑菇应助连垣采纳,获得10
9秒前
完美世界应助连垣采纳,获得10
9秒前
拳头完成签到,获得积分20
10秒前
lgq12697应助Houyulu采纳,获得10
10秒前
10秒前
Akim应助拾一采纳,获得10
11秒前
11秒前
Liens发布了新的文献求助10
11秒前
dong完成签到,获得积分10
12秒前
雪花发布了新的文献求助10
12秒前
Adelinelili发布了新的文献求助10
12秒前
12秒前
斯人完成签到 ,获得积分10
12秒前
wang发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074673
求助须知:如何正确求助?哪些是违规求助? 4294686
关于积分的说明 13382020
捐赠科研通 4116171
什么是DOI,文献DOI怎么找? 2254166
邀请新用户注册赠送积分活动 1258719
关于科研通互助平台的介绍 1191640