已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Forecasting the potential of global marine shipping carbon emission under artificial intelligence based on a novel multivariate discrete grey model

温室气体 稳健性(进化) 多元统计 计算机科学 人工神经网络 环境科学 运筹学 工程类 人工智能 机器学习 生态学 生物化学 生物 基因 化学
作者
Zirui Zeng,Junwen Xu,Shiwei Zhou,Yufeng Zhao,Yansong Shi
出处
期刊:Marine economics and management [Emerald (MCB UP)]
卷期号:7 (1): 42-66
标识
DOI:10.1108/maem-03-2024-0006
摘要

Purpose To achieve sustainable development in shipping, accurately identifying the impact of artificial intelligence on shipping carbon emissions and predicting these emissions is of utmost importance. Design/methodology/approach A multivariable discrete grey prediction model (WFTDGM) based on weakening buffering operator is established. Furthermore, the optimal nonlinear parameters are determined by Grey Wolf optimization algorithm to improve the prediction performance, enhancing the model’s predictive performance. Subsequently, global data on artificial intelligence and shipping carbon emissions are employed to validate the effectiveness of our new model and chosen algorithm. Findings To demonstrate the applicability and robustness of the new model in predicting marine shipping carbon emissions, the new model is used to forecast global marine shipping carbon emissions. Additionally, a comparative analysis is conducted with five other models. The empirical findings indicate that the WFTDGM (1, N) model outperforms other comparative models in overall efficacy, with MAPE for both the training and test sets being less than 4%, specifically at 0.299% and 3.489% respectively. Furthermore, the out-of-sample forecasting results suggest an upward trajectory in global shipping carbon emissions over the subsequent four years. Currently, the application of artificial intelligence in mitigating shipping-related carbon emissions has not achieved the desired inhibitory impact. Practical implications This research not only deepens understanding of the mechanisms through which artificial intelligence influences shipping carbon emissions but also provides a scientific basis for developing effective emission reduction strategies in the shipping industry, thereby contributing significantly to green shipping and global carbon reduction efforts. Originality/value The multi-variable discrete grey prediction model developed in this paper effectively mitigates abnormal fluctuations in time series, serving as a valuable reference for promoting global green and low-carbon transitions and sustainable economic development. Furthermore, based on the findings of this paper, a grey prediction model with even higher predictive performance can be constructed by integrating it with other algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haprier完成签到 ,获得积分10
6秒前
AM发布了新的文献求助30
9秒前
打打应助王冰洁采纳,获得100
11秒前
14秒前
15秒前
17秒前
大宝君发布了新的文献求助30
18秒前
20秒前
tczw667完成签到,获得积分10
21秒前
行者发布了新的文献求助10
21秒前
小章完成签到,获得积分10
22秒前
夏律发布了新的文献求助10
22秒前
23秒前
yang完成签到 ,获得积分10
23秒前
23秒前
26秒前
王冰洁发布了新的文献求助100
28秒前
吴中秋发布了新的文献求助10
28秒前
烟花应助pan采纳,获得10
28秒前
30秒前
杨同学发布了新的文献求助10
31秒前
TTT发布了新的文献求助10
32秒前
惊涛骇浪发布了新的文献求助10
35秒前
ymr完成签到 ,获得积分10
38秒前
文静听南完成签到 ,获得积分10
39秒前
40秒前
Ree完成签到,获得积分20
42秒前
Zeno完成签到 ,获得积分10
42秒前
所所应助吴中秋采纳,获得10
43秒前
asd1576562308完成签到 ,获得积分10
44秒前
欢喜的怜菡完成签到,获得积分10
44秒前
XIEYU发布了新的文献求助30
44秒前
Ree发布了新的文献求助10
48秒前
49秒前
LX有理想完成签到 ,获得积分10
50秒前
璎丸子完成签到,获得积分10
52秒前
TTT完成签到,获得积分10
52秒前
wan12138发布了新的文献求助10
54秒前
55秒前
脑洞疼应助夏律采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573236
求助须知:如何正确求助?哪些是违规求助? 4659412
关于积分的说明 14724454
捐赠科研通 4599168
什么是DOI,文献DOI怎么找? 2524154
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704