Alzheimer’s Disease MRI Classification using EfficientNet: A Deep Learning Model

计算机科学 疾病 人工智能 深度学习 医学 病理
作者
Majed Aborokbah
标识
DOI:10.1109/icapai61893.2024.10541281
摘要

The most common form of dementia, Alzheimer's disease (AD) ranks sixth in terms of fatality for people 65 years of age and older. Additionally, according to official statistics, the number of deaths caused by AD has increased substantially. Thus, early AD diagnosis can improve the prognosis for patients. Magnetic resonance images (MRI) have been often used for the diagnosis of AD. This research aims to enhance the accuracy of AD recognition through the development of an innovative system. Initially, the brain images were acquired from the AD Neuroimaging Initiative (ADNI) and the Open Access Series of Imaging Studies (OASIS), both of which are virtual datasets. The processed images are subsequently passed through the region-growing method, which also reduces the complexity of the system and extracts a connected region of an image based on predefined criteria. The segmentation procedure utilizes U-Net to partition the brain tissues. Finally, The EfficientNet-B0 deep learning model was utilized for classification, feature extraction and selection. The training set comprises 75% of the dataset, while the testing set comprises 25%. Specification: 98.120 % accuracy: 98.12 % sensitivity: 97.48%, precision: 98.40 % and f1-score: 97.89 % were the operational metrics of the U-Net + EfficientNet-B0 (UNet+ EffNet B0) model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
完美世界应助天瑶汝采纳,获得10
2秒前
善学以致用应助bubble嘞采纳,获得10
2秒前
陌路发布了新的文献求助10
2秒前
2秒前
marco应助xwl采纳,获得20
3秒前
4秒前
4秒前
彭于晏应助哈哈哈采纳,获得10
4秒前
香蕉觅云应助yiwan采纳,获得10
5秒前
木菁发布了新的文献求助10
5秒前
WWXWWX发布了新的文献求助10
5秒前
Zkxxxx发布了新的文献求助10
6秒前
6秒前
入戏太深完成签到,获得积分10
6秒前
上官若男应助美满的大象采纳,获得10
7秒前
JJ的奇妙冒险完成签到,获得积分10
8秒前
华仔应助WWXWWX采纳,获得10
8秒前
9秒前
闹啊闹发布了新的文献求助10
9秒前
10秒前
善学以致用应助KKKkkkkk采纳,获得10
10秒前
11秒前
英姑应助陌路采纳,获得10
11秒前
12秒前
13秒前
Fatima完成签到,获得积分10
14秒前
14秒前
15秒前
小洋完成签到,获得积分10
15秒前
Leung完成签到,获得积分10
15秒前
jawad发布了新的文献求助10
15秒前
bubble嘞发布了新的文献求助10
15秒前
初七发布了新的文献求助30
17秒前
yiwan发布了新的文献求助10
18秒前
lumcy完成签到,获得积分20
19秒前
19秒前
20秒前
足球发布了新的文献求助10
22秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454308
求助须知:如何正确求助?哪些是违规求助? 3049562
关于积分的说明 9017790
捐赠科研通 2738130
什么是DOI,文献DOI怎么找? 1501905
科研通“疑难数据库(出版商)”最低求助积分说明 694307
邀请新用户注册赠送积分活动 692926