Alzheimer’s Disease MRI Classification using EfficientNet: A Deep Learning Model

计算机科学 疾病 人工智能 深度学习 医学 病理
作者
Majed Aborokbah
标识
DOI:10.1109/icapai61893.2024.10541281
摘要

The most common form of dementia, Alzheimer's disease (AD) ranks sixth in terms of fatality for people 65 years of age and older. Additionally, according to official statistics, the number of deaths caused by AD has increased substantially. Thus, early AD diagnosis can improve the prognosis for patients. Magnetic resonance images (MRI) have been often used for the diagnosis of AD. This research aims to enhance the accuracy of AD recognition through the development of an innovative system. Initially, the brain images were acquired from the AD Neuroimaging Initiative (ADNI) and the Open Access Series of Imaging Studies (OASIS), both of which are virtual datasets. The processed images are subsequently passed through the region-growing method, which also reduces the complexity of the system and extracts a connected region of an image based on predefined criteria. The segmentation procedure utilizes U-Net to partition the brain tissues. Finally, The EfficientNet-B0 deep learning model was utilized for classification, feature extraction and selection. The training set comprises 75% of the dataset, while the testing set comprises 25%. Specification: 98.120 % accuracy: 98.12 % sensitivity: 97.48%, precision: 98.40 % and f1-score: 97.89 % were the operational metrics of the U-Net + EfficientNet-B0 (UNet+ EffNet B0) model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tian发布了新的文献求助100
1秒前
1秒前
FashionBoy应助聪明海云采纳,获得10
3秒前
666发布了新的文献求助10
6秒前
TCMning发布了新的文献求助10
7秒前
7秒前
四玖玖完成签到,获得积分10
9秒前
酷波er应助xx采纳,获得10
11秒前
海斯泰因发布了新的文献求助10
12秒前
Daisy发布了新的文献求助10
12秒前
害怕的水之完成签到,获得积分10
13秒前
一生低首向东坡完成签到,获得积分20
13秒前
风吹麦田应助ljn采纳,获得50
13秒前
13秒前
深情的鞯发布了新的文献求助10
14秒前
heaven发布了新的文献求助10
14秒前
雨中小王应助懵懂的寻冬采纳,获得10
14秒前
surain完成签到,获得积分10
14秒前
15秒前
李爱国应助xinL采纳,获得10
17秒前
17秒前
凡千灵溪完成签到 ,获得积分10
18秒前
18秒前
不南发布了新的文献求助10
18秒前
今后应助yss采纳,获得10
19秒前
SciGPT应助开朗的可乐采纳,获得10
19秒前
海斯泰因完成签到,获得积分10
20秒前
科研通AI6应助Roger采纳,获得10
21秒前
英姑应助syy080837采纳,获得10
21秒前
温柔衬衫完成签到,获得积分10
22秒前
23秒前
kk发布了新的文献求助10
24秒前
25秒前
25秒前
无花果应助小库里2025采纳,获得10
26秒前
左欣岳完成签到 ,获得积分10
28秒前
背后思卉应助懵懂的寻冬采纳,获得10
28秒前
29秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588751
求助须知:如何正确求助?哪些是违规求助? 4671674
关于积分的说明 14788516
捐赠科研通 4626078
什么是DOI,文献DOI怎么找? 2531920
邀请新用户注册赠送积分活动 1500505
关于科研通互助平台的介绍 1468329