Pixel Distillation: Cost-flexible Distillation across Image Sizes and Heterogeneous Networks

蒸馏 像素 计算机科学 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 图像处理 机器学习 化学 色谱法
作者
Guangyu Guo,Dingwen Zhang,Longfei Han,Nian Liu,Ming–Ming Cheng,Junwei Han
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 9536-9550 被引量:1
标识
DOI:10.1109/tpami.2024.3421277
摘要

Previous knowledge distillation (KD) methods mostly focus on compressing network architectures, which is not thorough enough in deployment as some costs like transmission bandwidth and imaging equipment are related to the image size. Therefore, we propose Pixel Distillation that extends knowledge distillation into the input level while simultaneously breaking architecture constraints. Such a scheme can achieve flexible cost control for deployment, as it allows the system to adjust both network architecture and image quality according to the overall requirement of resources. Specifically, we first propose an input spatial representation distillation (ISRD) mechanism to transfer spatial knowledge from large images to student's input module, which can facilitate stable knowledge transfer between CNN and ViT. Then, a Teacher-Assistant-Student (TAS) framework is further established to disentangle pixel distillation into the model compression stage and input compression stage, which significantly reduces the overall complexity of pixel distillation and the difficulty of distilling intermediate knowledge. Finally, we adapt pixel distillation to object detection via an aligned feature for preservation (AFP) strategy for TAS, which aligns output dimensions of detectors at each stage by manipulating features and anchors of the assistant. Comprehensive experiments on image classification and object detection demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱千兰完成签到,获得积分10
1秒前
单身的溪流完成签到,获得积分10
1秒前
Shenxh完成签到,获得积分10
1秒前
frostland完成签到,获得积分10
2秒前
2秒前
哈哈哈完成签到,获得积分20
3秒前
dongdong完成签到,获得积分10
4秒前
ttt完成签到,获得积分10
5秒前
stretchability完成签到,获得积分10
5秒前
6秒前
6秒前
熟悉的ZY先生应助miao采纳,获得10
8秒前
9秒前
9秒前
传奇3应助欢--采纳,获得10
9秒前
10秒前
执着完成签到,获得积分10
10秒前
10秒前
11秒前
pour发布了新的文献求助10
12秒前
12秒前
12秒前
xsx发布了新的文献求助10
13秒前
stefan完成签到,获得积分10
13秒前
斯文败类应助lyj采纳,获得10
13秒前
段盼兰发布了新的文献求助30
14秒前
14秒前
安静严青发布了新的文献求助10
14秒前
ira发布了新的文献求助10
15秒前
16秒前
Lee发布了新的文献求助30
18秒前
橘橘籽完成签到,获得积分10
18秒前
浅梨涡发布了新的文献求助10
18秒前
19秒前
哈哈哈哈哈完成签到,获得积分10
19秒前
21秒前
wanci应助杨航采纳,获得10
21秒前
21秒前
田様应助心灵美海蓝采纳,获得10
22秒前
小马甲应助安静严青采纳,获得10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260778
求助须知:如何正确求助?哪些是违规求助? 2901898
关于积分的说明 8317946
捐赠科研通 2571648
什么是DOI,文献DOI怎么找? 1397111
科研通“疑难数据库(出版商)”最低求助积分说明 653655
邀请新用户注册赠送积分活动 632178