亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lightweight object detection algorithm for road scenes based on YOLOV8

计算机科学 目标检测 块(置换群论) 计算 卷积(计算机科学) 人工智能 增采样 瓶颈 算法 假阳性悖论 特征提取 特征(语言学) 光学(聚焦) 计算机视觉 模式识别(心理学) 人工神经网络 图像(数学) 数学 光学 物理 哲学 嵌入式系统 语言学 几何学
作者
Chengqin Huang,Degang Yang,Xin Zhang
标识
DOI:10.1117/12.3029017
摘要

Object detection in road scenes is a crucial component of autonomous driving. Due to the significant variations in target scales, it is prone to false positives, false negatives, and some underperforming devices cannot deploy the state-of-the-art detectors. To address these issues, we propose a lightweight algorithm based on an improved YOLOv8. We simplify the model by using the FasterNet Block from FasterNet to replace the BottleNeck module in YOLOv8's backbone network C2f, reducing parameters and floating-point computations. We also enhance feature extraction by substituting RFCAConv for the downsampling standard convolution in C2f. Additionally, we introduce Wise-IoU to replace the original activation function, directing the network's focus towards anchor boxes of average quality.To promote effective fusion of original, shallow, and deep features, we introduce the BiFPN structure to replace YOLOv8's PAN structure. Furthermore, a small object detection layer is added to the head to handle the drastic scale variations in road scenes. Experimental results on the SODA10M dataset demonstrate that the improved YOLOv8 model achieves a 55.8% mAP@0.5 and a 35.5% mAP@0.5:0.95. The model's parameter count, size, and floating-point computations decrease by 58.3%, 57.0%, and 21.1%, respectively. Analysis of the experimental results confirms that the proposed model is effective and superior, striking a balance between detection accuracy and model lightweightness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助sun采纳,获得10
5秒前
15秒前
上官若男应助HZY采纳,获得10
15秒前
kkk完成签到 ,获得积分10
17秒前
谢挽风完成签到,获得积分10
18秒前
善学以致用应助vuu采纳,获得30
27秒前
火星上含芙完成签到 ,获得积分10
31秒前
笔墨留香完成签到,获得积分10
33秒前
科研通AI6应助sun采纳,获得10
40秒前
忧虑的代容完成签到,获得积分10
42秒前
43秒前
奔跑的小熊完成签到 ,获得积分10
44秒前
有趣的银发布了新的文献求助10
48秒前
科研通AI6应助sun采纳,获得10
51秒前
有趣的银完成签到,获得积分10
53秒前
小蝶完成签到 ,获得积分10
56秒前
爱学习的YY完成签到 ,获得积分10
1分钟前
共享精神应助干净南风采纳,获得10
1分钟前
sun发布了新的文献求助10
1分钟前
吃了吃了完成签到,获得积分10
1分钟前
归尘发布了新的文献求助10
1分钟前
豆子应助rose采纳,获得20
1分钟前
1分钟前
1分钟前
二丙发布了新的文献求助10
1分钟前
归尘完成签到,获得积分10
1分钟前
sun发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Dice°完成签到,获得积分20
1分钟前
飞龙在天完成签到,获得积分10
1分钟前
1分钟前
orange完成签到 ,获得积分10
1分钟前
1分钟前
Dice°发布了新的文献求助10
1分钟前
1分钟前
sun发布了新的文献求助10
1分钟前
浮游应助葛力采纳,获得10
1分钟前
王家的燕子完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232425
求助须知:如何正确求助?哪些是违规求助? 4401744
关于积分的说明 13699291
捐赠科研通 4268089
什么是DOI,文献DOI怎么找? 2342347
邀请新用户注册赠送积分活动 1339394
关于科研通互助平台的介绍 1295992