Tension identification of bridge suspension rods based on multiple impedance parameters from self-inductive coils

张力(地质) 材料科学 电阻抗 悬挂(拓扑) 桥(图论) 复合材料 结构工程 声学 工程类 电气工程 物理 数学 解剖 医学 替代医学 病理 同伦 纯数学 极限抗拉强度
作者
Xiaotian Wu,Senhua Zhang,Hong Zhang,Jianting Zhou,Li Jun Jiang,Kai Tong
出处
期刊:Nondestructive Testing and Evaluation [Informa]
卷期号:: 1-23
标识
DOI:10.1080/10589759.2024.2357226
摘要

This study introduces a method for identifying tension in suspension rods based on impedance from self-inductive coils, grounded in electromagnetic induction and magnetic elasticity principles. The theoretical feasibility of this method was analysed through a high-frequency inductive coil model. Steel strand tensile tests, utilising self-inductive coil sensors at various frequencies, explored the relationship between resistance, inductance, and capacitance with tension. According to the experimental results, the sensitivity coefficient is used to determine the optimal prediction frequency of each impedance parameter. Within the optimal frequency range, a single impedance parameter regression prediction method based on the impedance difference ratio index was proposed. To improve the accuracy and stability of the predictions, a GA-BP neural network prediction model based on the fusion of multiple impedance parameters was proposed. The results indicate that the GA-BP neural network prediction method, which integrates multiple impedance parameters, achieves higher accuracy in identifying cable forces than the single impedance parameter regression prediction method. Specifically, at a frequency of 5 kHz, the relative error of the GA-BP neural network prediction method, which integrates multiple impedance parameters, was only 3.74%. This research offers a novel approach for future in-service tension identification in bridge suspension rods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助佳AOAOAO采纳,获得10
1秒前
侯天宇完成签到,获得积分10
3秒前
3秒前
4秒前
volvoamg发布了新的文献求助10
4秒前
4秒前
morena发布了新的文献求助10
4秒前
5秒前
彭于晏应助Sweger采纳,获得10
7秒前
甜美慕梅发布了新的文献求助10
8秒前
8秒前
佳AOAOAO完成签到,获得积分10
9秒前
9秒前
10秒前
东东完成签到,获得积分10
11秒前
佳AOAOAO发布了新的文献求助10
12秒前
Hello_Alina发布了新的文献求助10
16秒前
17秒前
小马甲应助DW采纳,获得10
18秒前
19秒前
木木发布了新的文献求助10
20秒前
wromance发布了新的文献求助30
21秒前
搬运工发布了新的文献求助10
21秒前
21秒前
23秒前
23秒前
23秒前
Jasper应助杨乐多采纳,获得10
25秒前
牧青发布了新的文献求助10
26秒前
26秒前
27秒前
29秒前
NexusExplorer应助zxvcbnm采纳,获得10
29秒前
30秒前
圈圈发布了新的文献求助10
30秒前
SUR完成签到,获得积分10
30秒前
dkkjdsfakjd完成签到,获得积分10
30秒前
32秒前
漂亮的魂幽完成签到,获得积分10
32秒前
Orange应助高..采纳,获得10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161361
求助须知:如何正确求助?哪些是违规求助? 2812759
关于积分的说明 7896737
捐赠科研通 2471652
什么是DOI,文献DOI怎么找? 1316074
科研通“疑难数据库(出版商)”最低求助积分说明 631122
版权声明 602112