熔渣(焊接)
吸附
煤
介孔材料
废物管理
煤气化
化学工程
介孔二氧化硅
环境科学
材料科学
冶金
化学
催化作用
工程类
有机化学
作者
Xiaofen Wei,Jun Liu,Huangyu Yan,Tianshan Li,Ying Wang,Yuqiong Zhao,Guoqiang Li,Guojie Zhang
标识
DOI:10.1016/j.seppur.2024.128348
摘要
Coal gasification fine slag (CGFS), a byproduct of the coal gasification process, is currently being recognized as a resource with significant potential for value addition and sustainable applications, especially in synthesizing CO2 adsorbents. The overarching challenges in this domain include the attainment of high-efficiency, environmentally benign transformation of CGFS into useful products, and the development of cost-effective adsorbent materials featuring precisely engineered pore structures. In this study, a hierarchical porous nanostructured silica material is synthesized rapidly, efficiently, and cost-effectively through acid leaching and alkaline dissolution-assisted hydrothermal treatment, employing CGFS as the precursor. The mass ratios of sodium hydroxide (NaOH) to CGFS range from 0.4 to 1, resulting in varying morphologies and adsorption properties. Specifically, the sample with the NaOH to CGFS ratio of 0.6 (CGFS-0.6) shows the best adsorption performance. The adsorption capacities are 2.87 mmol/g and 8.49 mmol/g at 20 °C with 15 % and 45 % CO2 concentration, respectively. The material is characterized by a well-developed pore structure shaped like a bouquet of flowers, with a specific surface area of 457 m2/g and pore volume reaching 2.34 cm3/g. During the hydrothermal processing, silicate/aluminosilicate entities self-organized into a Si-O-Na/Al network structure, endowing the synthesized adsorbent with optimal internal porosity and silanol functionalities. The adsorption equilibrium is achieved rapidly within 10 min, and CO2 adsorption stability remains robust across 20 successive cycles. All isothermal models of the adsorbents conform to the Sips model. This study offers a promising pathway for the value-enhanced utilization of coal-derived solid wastes.
科研通智能强力驱动
Strongly Powered by AbleSci AI