Robust Drone Delivery with Weather Information

无人机 调度(生产过程) 运筹学 计算机科学 可扩展性 聚类分析 数学优化 工程类 数学 遗传学 生物 数据库 机器学习
作者
Chun Cheng,Yossiri Adulyasak,Louis-Martin Rousseau
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (4): 1402-1421 被引量:28
标识
DOI:10.1287/msom.2022.0339
摘要

Problem definition: Drone delivery has recently garnered significant attention due to its potential for faster delivery at a lower cost than other delivery options. When scheduling drones from a depot for delivery to various destinations, the dispatcher must take into account the uncertain wind conditions, which affect the delivery times of drones to their destinations, leading to late deliveries. Methodology/results: To mitigate the risk of delivery delays caused by wind uncertainty, we propose a two-period drone scheduling model to robustly optimize the delivery schedule. In this framework, the scheduling decisions are made in the morning, with the provision for different delivery schedules in the afternoon that adapt to updated weather information available by midday. Our approach minimizes the essential riskiness index, which can simultaneously account for the probability of tardy delivery and the magnitude of lateness. Using wind observation data, we characterize the uncertain flight times via a cluster-wise ambiguity set, which has the benefit of tractability while avoiding overfitting the empirical distribution. A branch-and-cut (B&C) algorithm is developed for this adaptive distributionally framework to improve its scalability. Our adaptive distributionally robust model can effectively reduce lateness in out-of-sample tests compared with other classical models. The proposed B&C algorithm can solve instances to optimality within a shorter time frame than a general modeling toolbox. Managerial implications: Decision makers can use the adaptive robust model together with the cluster-wise ambiguity set to effectively reduce service lateness at customers for drone delivery systems. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72101049 and 72232001], the Natural Science Foundation of Liaoning Province [Grant 2023-BS-091], the Fundamental Research Funds for the Central Universities [Grant DUT23RC(3)045], and the Major Project of the National Social Science Foundation [Grant 22&ZD151]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.0339 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ASXC发布了新的文献求助10
2秒前
XX完成签到,获得积分20
3秒前
激动的钢铁侠完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
脑洞疼应助糟糕的铁锤采纳,获得10
8秒前
xn201120发布了新的文献求助10
9秒前
苹果完成签到,获得积分20
9秒前
9秒前
xxttt完成签到,获得积分10
11秒前
notsoeasy发布了新的文献求助10
13秒前
一丁雨完成签到,获得积分10
13秒前
wys关闭了wys文献求助
14秒前
爱吃冬瓜发布了新的文献求助10
14秒前
xxttt发布了新的文献求助10
15秒前
情怀应助研究僧采纳,获得10
16秒前
17秒前
Hello应助ASXC采纳,获得10
19秒前
NJSGSKL发布了新的文献求助10
20秒前
21秒前
科目三应助Persist采纳,获得10
21秒前
22秒前
大模型应助xn201120采纳,获得10
22秒前
23秒前
25秒前
25秒前
小张张发布了新的文献求助30
25秒前
Tim完成签到,获得积分10
26秒前
没有蛀牙发布了新的文献求助10
26秒前
酷波er应助现代的无春采纳,获得10
27秒前
shen发布了新的文献求助10
27秒前
28秒前
28秒前
隐形曼青应助pearer采纳,获得10
28秒前
28秒前
gemn完成签到,获得积分10
29秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976253
求助须知:如何正确求助?哪些是违规求助? 3520405
关于积分的说明 11203301
捐赠科研通 3257028
什么是DOI,文献DOI怎么找? 1798589
邀请新用户注册赠送积分活动 877755
科研通“疑难数据库(出版商)”最低求助积分说明 806521