Robust Drone Delivery with Weather Information

无人机 调度(生产过程) 运筹学 计算机科学 可扩展性 聚类分析 数学优化 工程类 数学 遗传学 生物 数据库 机器学习
作者
Chun Cheng,Yossiri Adulyasak,Louis-Martin Rousseau
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (4): 1402-1421 被引量:25
标识
DOI:10.1287/msom.2022.0339
摘要

Problem definition: Drone delivery has recently garnered significant attention due to its potential for faster delivery at a lower cost than other delivery options. When scheduling drones from a depot for delivery to various destinations, the dispatcher must take into account the uncertain wind conditions, which affect the delivery times of drones to their destinations, leading to late deliveries. Methodology/results: To mitigate the risk of delivery delays caused by wind uncertainty, we propose a two-period drone scheduling model to robustly optimize the delivery schedule. In this framework, the scheduling decisions are made in the morning, with the provision for different delivery schedules in the afternoon that adapt to updated weather information available by midday. Our approach minimizes the essential riskiness index, which can simultaneously account for the probability of tardy delivery and the magnitude of lateness. Using wind observation data, we characterize the uncertain flight times via a cluster-wise ambiguity set, which has the benefit of tractability while avoiding overfitting the empirical distribution. A branch-and-cut (B&C) algorithm is developed for this adaptive distributionally framework to improve its scalability. Our adaptive distributionally robust model can effectively reduce lateness in out-of-sample tests compared with other classical models. The proposed B&C algorithm can solve instances to optimality within a shorter time frame than a general modeling toolbox. Managerial implications: Decision makers can use the adaptive robust model together with the cluster-wise ambiguity set to effectively reduce service lateness at customers for drone delivery systems. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72101049 and 72232001], the Natural Science Foundation of Liaoning Province [Grant 2023-BS-091], the Fundamental Research Funds for the Central Universities [Grant DUT23RC(3)045], and the Major Project of the National Social Science Foundation [Grant 22&ZD151]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.0339 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助虞无声采纳,获得10
1秒前
2秒前
小俞完成签到,获得积分20
3秒前
zzz发布了新的文献求助30
3秒前
科研通AI5应助Amy采纳,获得10
4秒前
ATOM发布了新的文献求助10
5秒前
6秒前
安南完成签到 ,获得积分10
8秒前
bofu发布了新的文献求助10
8秒前
科研通AI5应助123采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
典雅问寒应助科研通管家采纳,获得10
10秒前
甜心院士应助科研通管家采纳,获得10
10秒前
坚强亦丝应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
zho应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
12345完成签到,获得积分10
10秒前
11秒前
丘比特应助kyhappy_2002采纳,获得10
11秒前
小俞发布了新的文献求助10
12秒前
坦率的海豚完成签到,获得积分10
12秒前
安南关注了科研通微信公众号
12秒前
ni完成签到 ,获得积分10
12秒前
14秒前
16秒前
16秒前
bkagyin应助文献求助111采纳,获得10
17秒前
bofu发布了新的文献求助30
17秒前
星星完成签到 ,获得积分10
18秒前
20秒前
默默完成签到,获得积分10
21秒前
123发布了新的文献求助10
22秒前
兔兔发布了新的文献求助10
22秒前
bofu发布了新的文献求助10
25秒前
斯文败类应助6528以采纳,获得10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734505
求助须知:如何正确求助?哪些是违规求助? 3278465
关于积分的说明 10009670
捐赠科研通 2995064
什么是DOI,文献DOI怎么找? 1643182
邀请新用户注册赠送积分活动 780989
科研通“疑难数据库(出版商)”最低求助积分说明 749196