Robust Drone Delivery with Weather Information

无人机 调度(生产过程) 运筹学 计算机科学 可扩展性 聚类分析 数学优化 工程类 数学 遗传学 生物 数据库 机器学习
作者
Chun Cheng,Yossiri Adulyasak,Louis-Martin Rousseau
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (4): 1402-1421 被引量:45
标识
DOI:10.1287/msom.2022.0339
摘要

Problem definition: Drone delivery has recently garnered significant attention due to its potential for faster delivery at a lower cost than other delivery options. When scheduling drones from a depot for delivery to various destinations, the dispatcher must take into account the uncertain wind conditions, which affect the delivery times of drones to their destinations, leading to late deliveries. Methodology/results: To mitigate the risk of delivery delays caused by wind uncertainty, we propose a two-period drone scheduling model to robustly optimize the delivery schedule. In this framework, the scheduling decisions are made in the morning, with the provision for different delivery schedules in the afternoon that adapt to updated weather information available by midday. Our approach minimizes the essential riskiness index, which can simultaneously account for the probability of tardy delivery and the magnitude of lateness. Using wind observation data, we characterize the uncertain flight times via a cluster-wise ambiguity set, which has the benefit of tractability while avoiding overfitting the empirical distribution. A branch-and-cut (B&C) algorithm is developed for this adaptive distributionally framework to improve its scalability. Our adaptive distributionally robust model can effectively reduce lateness in out-of-sample tests compared with other classical models. The proposed B&C algorithm can solve instances to optimality within a shorter time frame than a general modeling toolbox. Managerial implications: Decision makers can use the adaptive robust model together with the cluster-wise ambiguity set to effectively reduce service lateness at customers for drone delivery systems. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72101049 and 72232001], the Natural Science Foundation of Liaoning Province [Grant 2023-BS-091], the Fundamental Research Funds for the Central Universities [Grant DUT23RC(3)045], and the Major Project of the National Social Science Foundation [Grant 22&ZD151]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.0339 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
caocao发布了新的文献求助10
1秒前
孤独的远山完成签到,获得积分10
1秒前
缓慢千易完成签到 ,获得积分10
2秒前
rabpig完成签到,获得积分10
2秒前
畅快的寻凝完成签到,获得积分10
2秒前
今后应助third采纳,获得10
2秒前
无期发布了新的文献求助10
2秒前
mookie发布了新的文献求助10
3秒前
次我完成签到,获得积分10
3秒前
顾矜应助dyd采纳,获得10
3秒前
3秒前
zqk02发布了新的文献求助10
4秒前
cy发布了新的文献求助10
4秒前
5秒前
路瑶发布了新的文献求助10
6秒前
研友_LJGoXn发布了新的文献求助10
6秒前
小涂同学完成签到,获得积分10
6秒前
tiantiantian完成签到,获得积分10
6秒前
852应助小学生采纳,获得30
6秒前
佳佳完成签到 ,获得积分10
7秒前
公西白翠发布了新的文献求助10
7秒前
浩浩浩完成签到,获得积分10
7秒前
windy发布了新的文献求助10
8秒前
风趣思山完成签到,获得积分20
8秒前
8秒前
Ava应助略略略采纳,获得10
8秒前
Ivy发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
此生不换完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
黄大大发布了新的文献求助10
11秒前
小赵发布了新的文献求助10
11秒前
蜡笔小新完成签到,获得积分10
11秒前
12秒前
12秒前
2010完成签到,获得积分10
12秒前
南桥发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515