FetchEEG: a hybrid approach combining feature extraction and temporal-channel joint attention for EEG-based emotion classification

计算机科学 人工智能 特征提取 脑电图 模式识别(心理学) 特征(语言学) 一般化 接头(建筑物) 频道(广播) 特征工程 深度学习 机器学习 语音识别 建筑工程 心理学 语言学 哲学 工程类 数学分析 计算机网络 数学 精神科
作者
Yu Liang,Chenlong Zhang,Shan An,Zaitian Wang,Kaize Shi,Tianhao Peng,Yuqing Ma,Xiaoyang Xie,Jian He,Kun Zheng
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (3): 036011-036011
标识
DOI:10.1088/1741-2552/ad4743
摘要

Abstract Objective . Electroencephalogram (EEG) analysis has always been an important tool in neural engineering, and the recognition and classification of human emotions are one of the important tasks in neural engineering. EEG data, obtained from electrodes placed on the scalp, represent a valuable resource of information for brain activity analysis and emotion recognition. Feature extraction methods have shown promising results, but recent trends have shifted toward end-to-end methods based on deep learning. However, these approaches often overlook channel representations, and their complex structures pose certain challenges to model fitting. Approach . To address these challenges, this paper proposes a hybrid approach named FetchEEG that combines feature extraction and temporal-channel joint attention. Leveraging the advantages of both traditional feature extraction and deep learning, the FetchEEG adopts a multi-head self-attention mechanism to extract representations between different time moments and channels simultaneously. The joint representations are then concatenated and classified using fully-connected layers for emotion recognition. The performance of the FetchEEG is verified by comparison experiments on a self-developed dataset and two public datasets. Main results . In both subject-dependent and subject-independent experiments, the FetchEEG demonstrates better performance and stronger generalization ability than the state-of-the-art methods on all datasets. Moreover, the performance of the FetchEEG is analyzed for different sliding window sizes and overlap rates in the feature extraction module. The sensitivity of emotion recognition is investigated for three- and five-frequency-band scenarios. Significance . FetchEEG is a novel hybrid method based on EEG for emotion classification, which combines EEG feature extraction with Transformer neural networks. It has achieved state-of-the-art performance on both self-developed datasets and multiple public datasets, with significantly higher training efficiency compared to end-to-end methods, demonstrating its effectiveness and feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
z3Q应助嘻嘻采纳,获得10
1秒前
1秒前
和平使命应助标致诗蕾采纳,获得10
1秒前
1秒前
听闻墨笙发布了新的文献求助10
2秒前
2秒前
ccyy完成签到 ,获得积分10
2秒前
3秒前
天天快乐应助su采纳,获得10
3秒前
4秒前
Hydro发布了新的文献求助30
4秒前
Islay50ppm发布了新的文献求助30
4秒前
5秒前
yyy完成签到 ,获得积分10
5秒前
宋宋发布了新的文献求助10
6秒前
6秒前
田様应助mmknnk采纳,获得10
6秒前
6秒前
愤怒的水壶完成签到,获得积分10
7秒前
123发布了新的文献求助10
7秒前
7秒前
Akim应助漂亮的念双采纳,获得10
7秒前
要不要减肥完成签到,获得积分10
7秒前
昵称发布了新的文献求助10
8秒前
8秒前
晨屿发布了新的文献求助10
8秒前
夏天的西瓜完成签到,获得积分10
8秒前
9秒前
10秒前
Wt发布了新的文献求助20
10秒前
hh发布了新的文献求助10
11秒前
小黄应助Rayeden采纳,获得10
11秒前
小马甲应助dan1029采纳,获得10
11秒前
11秒前
江皓昕发布了新的文献求助10
12秒前
小红发布了新的文献求助10
12秒前
香精完成签到,获得积分10
12秒前
AN77777发布了新的文献求助10
12秒前
guo发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942271
关于积分的说明 8507774
捐赠科研通 2617189
什么是DOI,文献DOI怎么找? 1430004
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186