FetchEEG: a hybrid approach combining feature extraction and temporal-channel joint attention for EEG-based emotion classification

计算机科学 人工智能 特征提取 脑电图 模式识别(心理学) 特征(语言学) 一般化 接头(建筑物) 频道(广播) 特征工程 深度学习 机器学习 语音识别 建筑工程 心理学 语言学 哲学 工程类 数学分析 计算机网络 数学 精神科
作者
Yu Liang,Chenlong Zhang,Shan An,Zaitian Wang,Kaize Shi,Tianhao Peng,Yuqing Ma,Xiaoyang Xie,Jian He,Kun Zheng
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (3): 036011-036011
标识
DOI:10.1088/1741-2552/ad4743
摘要

Abstract Objective . Electroencephalogram (EEG) analysis has always been an important tool in neural engineering, and the recognition and classification of human emotions are one of the important tasks in neural engineering. EEG data, obtained from electrodes placed on the scalp, represent a valuable resource of information for brain activity analysis and emotion recognition. Feature extraction methods have shown promising results, but recent trends have shifted toward end-to-end methods based on deep learning. However, these approaches often overlook channel representations, and their complex structures pose certain challenges to model fitting. Approach . To address these challenges, this paper proposes a hybrid approach named FetchEEG that combines feature extraction and temporal-channel joint attention. Leveraging the advantages of both traditional feature extraction and deep learning, the FetchEEG adopts a multi-head self-attention mechanism to extract representations between different time moments and channels simultaneously. The joint representations are then concatenated and classified using fully-connected layers for emotion recognition. The performance of the FetchEEG is verified by comparison experiments on a self-developed dataset and two public datasets. Main results . In both subject-dependent and subject-independent experiments, the FetchEEG demonstrates better performance and stronger generalization ability than the state-of-the-art methods on all datasets. Moreover, the performance of the FetchEEG is analyzed for different sliding window sizes and overlap rates in the feature extraction module. The sensitivity of emotion recognition is investigated for three- and five-frequency-band scenarios. Significance . FetchEEG is a novel hybrid method based on EEG for emotion classification, which combines EEG feature extraction with Transformer neural networks. It has achieved state-of-the-art performance on both self-developed datasets and multiple public datasets, with significantly higher training efficiency compared to end-to-end methods, demonstrating its effectiveness and feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
JUSTs0so发布了新的文献求助10
刚刚
长夜变清早完成签到,获得积分10
1秒前
2秒前
2秒前
otaro发布了新的文献求助10
3秒前
yinbin完成签到,获得积分10
3秒前
3秒前
独木舟发布了新的文献求助10
3秒前
白衣未央发布了新的文献求助10
3秒前
脑洞疼应助现实的曼荷采纳,获得10
5秒前
5秒前
轩辕德地发布了新的文献求助10
5秒前
三九完成签到,获得积分10
6秒前
orixero应助少年郎采纳,获得10
6秒前
三金发布了新的文献求助10
6秒前
kuku发布了新的文献求助10
6秒前
土豆你个西红柿完成签到 ,获得积分10
7秒前
小余完成签到,获得积分10
7秒前
8秒前
sherry完成签到 ,获得积分10
8秒前
搜集达人应助陈佳琪采纳,获得30
8秒前
xiaohan完成签到,获得积分10
8秒前
独木舟完成签到,获得积分10
8秒前
可爱的函函应助无辜洋葱采纳,获得10
9秒前
完美世界应助瘦瘦的背包采纳,获得10
9秒前
小木棉完成签到,获得积分10
9秒前
威武诺言发布了新的文献求助10
9秒前
9秒前
9秒前
wdn0411完成签到,获得积分10
9秒前
zenoalter完成签到,获得积分10
10秒前
受伤幻桃完成签到,获得积分10
10秒前
lh完成签到,获得积分10
10秒前
11秒前
11秒前
怡然的飞珍完成签到,获得积分10
11秒前
Ava应助luuuuuing采纳,获得30
12秒前
高高千筹完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762