Charge Transfer and Ion Occupation Induced Ultra‐Durable and All‐Weather Energy Generation from Ambient Air for Over 200 Days

材料科学 电荷(物理) 离子 工程物理 能量转移 气象学 纳米技术 物理 量子力学
作者
Jian Lu,Bingang Xu,Junxian Huang,Xinlong Liu,Hong Fu
出处
期刊:Advanced Functional Materials [Wiley]
被引量:5
标识
DOI:10.1002/adfm.202406901
摘要

Abstract The notion of spontaneous and persistent energy generation from omnipresent atmospheric moisture presents an alluring prospect in the realm of next‐generation energy sources. Here, an ultra‐durable and all‐weather energy generator (UAEG) predicated on interface‐induced proton migration derived from enhanced proton dissociation by charge transfer and ion occupation is reported, which reduces the diffusion barrier of protons in chromatogram‐like mass transfer by avoiding the rebinding of dissociated protons with charged polyelectrolyte chains, thus leading to efficient and continuous proton migration through heterogeneously hygroscopic interface and delivering ultra‐durable direct‐current output. Deep insight into underlying mechanisms is demonstrated by theoretical calculations and in situ investigations toward molecular interactions and charge distribution. A UAEG unit with 4 cm 2 in size can generate an impressive electric output (0.88 V and 37.58 µA) across extensive relative humidity (10–90%) and ambient temperature (−30–50 ˚C), capable of generating energy in all‐weather conditions (e.g., sunny, cloudy, overcast, and rainy) regardless of day and night. Importantly, it is the first time that a commercial electronic is continuously driven for over 200 days in all‐weather conditions just depending on ambient moisture. This work provides a novel perspective for the development of ultra‐durable and all‐weather moisture‐enabled energy generators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
通~发布了新的文献求助10
刚刚
刚刚
Apple完成签到,获得积分10
刚刚
sunzhiyu233发布了新的文献求助10
1秒前
医学僧发布了新的文献求助30
1秒前
Sheila完成签到 ,获得积分10
1秒前
sweetbearm应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
NN应助科研通管家采纳,获得10
1秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
36456657应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
prosperp应助科研通管家采纳,获得20
2秒前
打打应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
执着夏岚完成签到 ,获得积分10
3秒前
CipherSage应助苏州小北采纳,获得10
3秒前
www完成签到,获得积分20
4秒前
汉关发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
lixiangrui110发布了新的文献求助10
6秒前
善学以致用应助楚岸采纳,获得10
7秒前
cilan发布了新的文献求助10
7秒前
7秒前
卡卡发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808