Symptom-BERT: Enhancing Cancer Symptom Detection in EHR Clinical Notes

医学 斯科普斯 癌症 背景(考古学) 梅德林 人工智能 家庭医学 内科学 计算机科学 古生物学 政治学 法学 生物
作者
Nahid Zeinali,Alaa Albashayreh,Weiguo Fan,Stephanie Gilbertson White
出处
期刊:Journal of Pain and Symptom Management [Elsevier BV]
卷期号:68 (2): 190-198.e1 被引量:5
标识
DOI:10.1016/j.jpainsymman.2024.05.015
摘要

Context Extracting cancer symptom documentation allows clinicians to develop highly individualized symptom prediction algorithms to deliver symptom management care. Leveraging advanced language models to detect symptom data in clinical narratives can significantly enhance this process. Objective This study uses a pre-trained large language model to detect and extract cancer symptoms in clinical notes. Methods We developed a pre-trained language model to identify cancer symptoms in clinical notes based on a clinical corpus from the Enterprise Data Warehouse for Research at a healthcare system in the Midwestern United States. This study was conducted in 4 phases: 1 Sung H Ferlay J Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71: 209-249 Crossref PubMed Scopus (55646) Google Scholar pre-training a Bio-Clinical BERT model on 1 million unlabeled clinical documents, 2 Siegel RL Miller KD Wagle NS Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023; 73: 17-48 Crossref PubMed Scopus (5090) Google Scholar fine-tuning Symptom-BERT for detecting 13 cancer symptom groups within 1112 annotated clinical notes, 3 Lizán L Pérez-Carbonell L Comellas M. Additional Value of Patient-Reported Symptom Monitoring in Cancer Care: A Systematic Review of the Literature. Cancers (Basel). 2021; 13 Google Scholar generating 180 synthetic clinical notes using ChatGPT-4 for external validation, and 4 Tripp-Reimer T Williams JK Gardner SE et al. An integrated model of multimorbidity and symptom science. Nurs Outlook. 2020; 68: 430-439 Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar comparing the internal and external performance of Symptom-BERT against a non-pre-trained version and six other BERT implementations. Results The Symptom-BERT model effectively detected cancer symptoms in clinical notes. It achieved results with a micro-averaged F1-score of 0.933, an AUC of 0.929 internally, and 0.831 and 0.834 externally. Our analysis shows that physical symptoms, like Pruritus, are typically identified with higher performance than psychological symptoms, such as Anxiety. Conclusion This study underscores the transformative potential of specialized pre-training on domain-specific data in boosting the performance of language models for medical applications. The Symptom-BERT model's exceptional efficacy in detecting cancer symptoms heralds a groundbreaking stride in patient-centered AI technologies, offering a promising path to elevate symptom management and cultivate superior patient self-care outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零源发布了新的文献求助10
刚刚
涵泽发布了新的文献求助10
刚刚
why关闭了why文献求助
1秒前
小羊烧鸡发布了新的文献求助10
1秒前
1秒前
白晓睿发布了新的文献求助10
1秒前
didi完成签到,获得积分10
2秒前
zz发布了新的文献求助10
2秒前
旺仔发布了新的文献求助10
2秒前
misa发布了新的文献求助10
2秒前
YuxiaoDang关注了科研通微信公众号
2秒前
4秒前
4秒前
qiuqiu完成签到,获得积分10
5秒前
小马甲应助吐个泡泡采纳,获得10
6秒前
LLLL发布了新的文献求助10
6秒前
7秒前
7秒前
英俊的铭应助零源采纳,获得10
8秒前
kekeli发布了新的文献求助30
8秒前
小小小罗wy完成签到,获得积分10
8秒前
脑洞疼应助codecow采纳,获得10
9秒前
Lucas应助123lura采纳,获得10
9秒前
556发布了新的文献求助10
9秒前
田様应助浮熙采纳,获得10
10秒前
FashionBoy应助搞怪梦寒采纳,获得10
10秒前
幽默服饰完成签到,获得积分10
10秒前
酷波er应助summer采纳,获得30
10秒前
Micheal完成签到,获得积分10
10秒前
搜集达人应助旺仔采纳,获得10
10秒前
midokaori发布了新的文献求助10
12秒前
标致伟帮完成签到,获得积分10
12秒前
新新发布了新的文献求助30
12秒前
酷波er应助vidi采纳,获得10
13秒前
汉堡包应助震动的问寒采纳,获得10
13秒前
完美世界应助meimale采纳,获得30
13秒前
16秒前
HMF关闭了HMF文献求助
17秒前
拾寒完成签到,获得积分10
17秒前
呆萌听兰完成签到,获得积分10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288