清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Symptom-BERT: Enhancing Cancer Symptom Detection in EHR Clinical Notes

医学 斯科普斯 癌症 背景(考古学) 梅德林 人工智能 家庭医学 内科学 计算机科学 政治学 生物 古生物学 法学
作者
Nahid Zeinali,Alaa Albashayreh,Weiguo Fan,Stephen White
出处
期刊:Journal of Pain and Symptom Management [Elsevier]
卷期号:68 (2): 190-198.e1
标识
DOI:10.1016/j.jpainsymman.2024.05.015
摘要

Context Extracting cancer symptom documentation allows clinicians to develop highly individualized symptom prediction algorithms to deliver symptom management care. Leveraging advanced language models to detect symptom data in clinical narratives can significantly enhance this process. Objective This study uses a pre-trained large language model to detect and extract cancer symptoms in clinical notes. Methods We developed a pre-trained language model to identify cancer symptoms in clinical notes based on a clinical corpus from the Enterprise Data Warehouse for Research at a healthcare system in the Midwestern United States. This study was conducted in 4 phases: 1 Sung H Ferlay J Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71: 209-249 Crossref PubMed Scopus (55646) Google Scholar pre-training a Bio-Clinical BERT model on 1 million unlabeled clinical documents, 2 Siegel RL Miller KD Wagle NS Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023; 73: 17-48 Crossref PubMed Scopus (5090) Google Scholar fine-tuning Symptom-BERT for detecting 13 cancer symptom groups within 1112 annotated clinical notes, 3 Lizán L Pérez-Carbonell L Comellas M. Additional Value of Patient-Reported Symptom Monitoring in Cancer Care: A Systematic Review of the Literature. Cancers (Basel). 2021; 13 Google Scholar generating 180 synthetic clinical notes using ChatGPT-4 for external validation, and 4 Tripp-Reimer T Williams JK Gardner SE et al. An integrated model of multimorbidity and symptom science. Nurs Outlook. 2020; 68: 430-439 Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar comparing the internal and external performance of Symptom-BERT against a non-pre-trained version and six other BERT implementations. Results The Symptom-BERT model effectively detected cancer symptoms in clinical notes. It achieved results with a micro-averaged F1-score of 0.933, an AUC of 0.929 internally, and 0.831 and 0.834 externally. Our analysis shows that physical symptoms, like Pruritus, are typically identified with higher performance than psychological symptoms, such as Anxiety. Conclusion This study underscores the transformative potential of specialized pre-training on domain-specific data in boosting the performance of language models for medical applications. The Symptom-BERT model's exceptional efficacy in detecting cancer symptoms heralds a groundbreaking stride in patient-centered AI technologies, offering a promising path to elevate symptom management and cultivate superior patient self-care outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangye完成签到 ,获得积分10
37秒前
45秒前
___淡完成签到 ,获得积分10
1分钟前
HuiHui完成签到,获得积分10
1分钟前
1分钟前
2分钟前
小草完成签到,获得积分10
2分钟前
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
weilei完成签到,获得积分10
4分钟前
5分钟前
共享精神应助科研通管家采纳,获得10
5分钟前
5分钟前
何琳发布了新的文献求助10
5分钟前
顺利千兰发布了新的文献求助200
6分钟前
无花果应助何琳采纳,获得10
6分钟前
搜集达人应助何琳采纳,获得10
6分钟前
Jasper应助何琳采纳,获得10
6分钟前
在水一方应助何琳采纳,获得10
6分钟前
领导范儿应助何琳采纳,获得10
6分钟前
英姑应助何琳采纳,获得10
6分钟前
落沧完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
8分钟前
傻傻的芝发布了新的文献求助10
8分钟前
8分钟前
毓雅完成签到,获得积分10
9分钟前
9分钟前
科目三应助科研通管家采纳,获得20
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
天天快乐应助hannah采纳,获得10
9分钟前
9分钟前
nkuwangkai发布了新的文献求助30
10分钟前
刘锦裕完成签到,获得积分10
10分钟前
nkuwangkai发布了新的文献求助10
10分钟前
10分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015724
关于积分的说明 8871671
捐赠科研通 2703441
什么是DOI,文献DOI怎么找? 1482290
科研通“疑难数据库(出版商)”最低求助积分说明 685177
邀请新用户注册赠送积分活动 679951