亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Symptom-BERT: Enhancing Cancer Symptom Detection in EHR Clinical Notes

医学 斯科普斯 癌症 背景(考古学) 梅德林 人工智能 家庭医学 内科学 计算机科学 古生物学 政治学 法学 生物
作者
Nahid Zeinali,Alaa Albashayreh,Weiguo Fan,Stephanie Gilbertson White
出处
期刊:Journal of Pain and Symptom Management [Elsevier]
卷期号:68 (2): 190-198.e1 被引量:5
标识
DOI:10.1016/j.jpainsymman.2024.05.015
摘要

Context Extracting cancer symptom documentation allows clinicians to develop highly individualized symptom prediction algorithms to deliver symptom management care. Leveraging advanced language models to detect symptom data in clinical narratives can significantly enhance this process. Objective This study uses a pre-trained large language model to detect and extract cancer symptoms in clinical notes. Methods We developed a pre-trained language model to identify cancer symptoms in clinical notes based on a clinical corpus from the Enterprise Data Warehouse for Research at a healthcare system in the Midwestern United States. This study was conducted in 4 phases: 1 Sung H Ferlay J Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71: 209-249 Crossref PubMed Scopus (55646) Google Scholar pre-training a Bio-Clinical BERT model on 1 million unlabeled clinical documents, 2 Siegel RL Miller KD Wagle NS Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023; 73: 17-48 Crossref PubMed Scopus (5090) Google Scholar fine-tuning Symptom-BERT for detecting 13 cancer symptom groups within 1112 annotated clinical notes, 3 Lizán L Pérez-Carbonell L Comellas M. Additional Value of Patient-Reported Symptom Monitoring in Cancer Care: A Systematic Review of the Literature. Cancers (Basel). 2021; 13 Google Scholar generating 180 synthetic clinical notes using ChatGPT-4 for external validation, and 4 Tripp-Reimer T Williams JK Gardner SE et al. An integrated model of multimorbidity and symptom science. Nurs Outlook. 2020; 68: 430-439 Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar comparing the internal and external performance of Symptom-BERT against a non-pre-trained version and six other BERT implementations. Results The Symptom-BERT model effectively detected cancer symptoms in clinical notes. It achieved results with a micro-averaged F1-score of 0.933, an AUC of 0.929 internally, and 0.831 and 0.834 externally. Our analysis shows that physical symptoms, like Pruritus, are typically identified with higher performance than psychological symptoms, such as Anxiety. Conclusion This study underscores the transformative potential of specialized pre-training on domain-specific data in boosting the performance of language models for medical applications. The Symptom-BERT model's exceptional efficacy in detecting cancer symptoms heralds a groundbreaking stride in patient-centered AI technologies, offering a promising path to elevate symptom management and cultivate superior patient self-care outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
du发布了新的文献求助10
4秒前
番茄酱完成签到 ,获得积分10
7秒前
inRe发布了新的文献求助10
9秒前
胡林发布了新的文献求助10
11秒前
Raunio完成签到,获得积分10
17秒前
Mmrc发布了新的文献求助30
25秒前
39秒前
ucas大菠萝完成签到,获得积分10
42秒前
ALiyyyn发布了新的文献求助10
45秒前
快乐学习每一天完成签到 ,获得积分10
59秒前
科研通AI6应助尊敬的芷卉采纳,获得10
1分钟前
Jasper应助尊敬的芷卉采纳,获得10
1分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
1分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
1分钟前
田様应助尊敬的芷卉采纳,获得10
1分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
1分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
1分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
1分钟前
充电宝应助尊敬的芷卉采纳,获得10
1分钟前
Owen应助尊敬的芷卉采纳,获得10
1分钟前
领导范儿应助郭博采纳,获得10
1分钟前
粽子完成签到,获得积分10
1分钟前
ALiyyyn完成签到,获得积分20
1分钟前
1分钟前
神医magical发布了新的文献求助10
1分钟前
lzxucn完成签到,获得积分10
1分钟前
1分钟前
青春完成签到,获得积分10
1分钟前
青春发布了新的文献求助10
1分钟前
归去来兮应助尊敬的芷卉采纳,获得10
1分钟前
所所应助尊敬的芷卉采纳,获得10
1分钟前
JamesPei应助尊敬的芷卉采纳,获得10
1分钟前
NexusExplorer应助尊敬的芷卉采纳,获得10
1分钟前
FashionBoy应助尊敬的芷卉采纳,获得10
1分钟前
orixero应助尊敬的芷卉采纳,获得10
1分钟前
思源应助尊敬的芷卉采纳,获得10
1分钟前
小马甲应助尊敬的芷卉采纳,获得10
1分钟前
Ava应助尊敬的芷卉采纳,获得10
1分钟前
在水一方应助尊敬的芷卉采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628118
求助须知:如何正确求助?哪些是违规求助? 4715649
关于积分的说明 14963643
捐赠科研通 4785789
什么是DOI,文献DOI怎么找? 2555335
邀请新用户注册赠送积分活动 1516649
关于科研通互助平台的介绍 1477184