Symptom-BERT: Enhancing Cancer Symptom Detection in EHR Clinical Notes

医学 斯科普斯 癌症 背景(考古学) 梅德林 人工智能 家庭医学 内科学 计算机科学 古生物学 政治学 法学 生物
作者
Nahid Zeinali,Alaa Albashayreh,Weiguo Fan,Stephanie Gilbertson White
出处
期刊:Journal of Pain and Symptom Management [Elsevier]
卷期号:68 (2): 190-198.e1 被引量:5
标识
DOI:10.1016/j.jpainsymman.2024.05.015
摘要

Context Extracting cancer symptom documentation allows clinicians to develop highly individualized symptom prediction algorithms to deliver symptom management care. Leveraging advanced language models to detect symptom data in clinical narratives can significantly enhance this process. Objective This study uses a pre-trained large language model to detect and extract cancer symptoms in clinical notes. Methods We developed a pre-trained language model to identify cancer symptoms in clinical notes based on a clinical corpus from the Enterprise Data Warehouse for Research at a healthcare system in the Midwestern United States. This study was conducted in 4 phases: 1 Sung H Ferlay J Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71: 209-249 Crossref PubMed Scopus (55646) Google Scholar pre-training a Bio-Clinical BERT model on 1 million unlabeled clinical documents, 2 Siegel RL Miller KD Wagle NS Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023; 73: 17-48 Crossref PubMed Scopus (5090) Google Scholar fine-tuning Symptom-BERT for detecting 13 cancer symptom groups within 1112 annotated clinical notes, 3 Lizán L Pérez-Carbonell L Comellas M. Additional Value of Patient-Reported Symptom Monitoring in Cancer Care: A Systematic Review of the Literature. Cancers (Basel). 2021; 13 Google Scholar generating 180 synthetic clinical notes using ChatGPT-4 for external validation, and 4 Tripp-Reimer T Williams JK Gardner SE et al. An integrated model of multimorbidity and symptom science. Nurs Outlook. 2020; 68: 430-439 Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar comparing the internal and external performance of Symptom-BERT against a non-pre-trained version and six other BERT implementations. Results The Symptom-BERT model effectively detected cancer symptoms in clinical notes. It achieved results with a micro-averaged F1-score of 0.933, an AUC of 0.929 internally, and 0.831 and 0.834 externally. Our analysis shows that physical symptoms, like Pruritus, are typically identified with higher performance than psychological symptoms, such as Anxiety. Conclusion This study underscores the transformative potential of specialized pre-training on domain-specific data in boosting the performance of language models for medical applications. The Symptom-BERT model's exceptional efficacy in detecting cancer symptoms heralds a groundbreaking stride in patient-centered AI technologies, offering a promising path to elevate symptom management and cultivate superior patient self-care outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大意的惊蛰完成签到,获得积分10
刚刚
Yidie发布了新的文献求助10
1秒前
orixero应助沉睡的大马猴采纳,获得10
1秒前
个性凡儿发布了新的文献求助10
1秒前
2秒前
yummm完成签到 ,获得积分10
2秒前
3秒前
希望天下0贩的0应助囚徒采纳,获得10
3秒前
3秒前
蝉蝉完成签到,获得积分10
4秒前
醉熏的荣轩完成签到 ,获得积分10
4秒前
4秒前
英姑应助勤奋靖易采纳,获得10
4秒前
5秒前
6秒前
6秒前
耍酷的冷雪完成签到,获得积分10
6秒前
fff1发布了新的文献求助20
6秒前
个性凡儿完成签到,获得积分10
7秒前
7秒前
james发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
10秒前
陈诚完成签到,获得积分10
10秒前
yxl0214发布了新的文献求助10
10秒前
大模型应助帮抬抬采纳,获得10
10秒前
11秒前
慕青应助xiaoxiang采纳,获得10
12秒前
失眠呆呆鱼完成签到 ,获得积分10
12秒前
13秒前
13秒前
大导师完成签到,获得积分10
14秒前
14秒前
时代炸蛋完成签到 ,获得积分10
15秒前
yushanriqing发布了新的文献求助10
16秒前
健康的人生完成签到,获得积分10
18秒前
爱撒娇的西装完成签到,获得积分10
18秒前
23完成签到,获得积分20
18秒前
aimynora完成签到 ,获得积分10
19秒前
丘比特应助yxl0214采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709