清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Symptom-BERT: Enhancing Cancer Symptom Detection in EHR Clinical Notes

医学 斯科普斯 癌症 背景(考古学) 梅德林 人工智能 家庭医学 内科学 计算机科学 古生物学 政治学 法学 生物
作者
Nahid Zeinali,Alaa Albashayreh,Weiguo Fan,Stephanie Gilbertson White
出处
期刊:Journal of Pain and Symptom Management [Elsevier BV]
卷期号:68 (2): 190-198.e1 被引量:5
标识
DOI:10.1016/j.jpainsymman.2024.05.015
摘要

Context Extracting cancer symptom documentation allows clinicians to develop highly individualized symptom prediction algorithms to deliver symptom management care. Leveraging advanced language models to detect symptom data in clinical narratives can significantly enhance this process. Objective This study uses a pre-trained large language model to detect and extract cancer symptoms in clinical notes. Methods We developed a pre-trained language model to identify cancer symptoms in clinical notes based on a clinical corpus from the Enterprise Data Warehouse for Research at a healthcare system in the Midwestern United States. This study was conducted in 4 phases: 1 Sung H Ferlay J Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71: 209-249 Crossref PubMed Scopus (55646) Google Scholar pre-training a Bio-Clinical BERT model on 1 million unlabeled clinical documents, 2 Siegel RL Miller KD Wagle NS Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023; 73: 17-48 Crossref PubMed Scopus (5090) Google Scholar fine-tuning Symptom-BERT for detecting 13 cancer symptom groups within 1112 annotated clinical notes, 3 Lizán L Pérez-Carbonell L Comellas M. Additional Value of Patient-Reported Symptom Monitoring in Cancer Care: A Systematic Review of the Literature. Cancers (Basel). 2021; 13 Google Scholar generating 180 synthetic clinical notes using ChatGPT-4 for external validation, and 4 Tripp-Reimer T Williams JK Gardner SE et al. An integrated model of multimorbidity and symptom science. Nurs Outlook. 2020; 68: 430-439 Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar comparing the internal and external performance of Symptom-BERT against a non-pre-trained version and six other BERT implementations. Results The Symptom-BERT model effectively detected cancer symptoms in clinical notes. It achieved results with a micro-averaged F1-score of 0.933, an AUC of 0.929 internally, and 0.831 and 0.834 externally. Our analysis shows that physical symptoms, like Pruritus, are typically identified with higher performance than psychological symptoms, such as Anxiety. Conclusion This study underscores the transformative potential of specialized pre-training on domain-specific data in boosting the performance of language models for medical applications. The Symptom-BERT model's exceptional efficacy in detecting cancer symptoms heralds a groundbreaking stride in patient-centered AI technologies, offering a promising path to elevate symptom management and cultivate superior patient self-care outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红黄蓝完成签到 ,获得积分10
1秒前
天下无马完成签到 ,获得积分10
4秒前
大飞完成签到,获得积分10
15秒前
鲸鱼打滚完成签到 ,获得积分10
20秒前
23秒前
David发布了新的文献求助10
30秒前
爱静静完成签到,获得积分0
31秒前
如意竺完成签到,获得积分10
36秒前
搜集达人应助David采纳,获得10
44秒前
王佳亮完成签到,获得积分10
52秒前
dreamwalk完成签到 ,获得积分10
54秒前
xiaozou55完成签到 ,获得积分10
55秒前
Dr_Chu完成签到 ,获得积分10
59秒前
好学的泷泷完成签到 ,获得积分10
1分钟前
1分钟前
lilylwy完成签到 ,获得积分0
1分钟前
shuiwuming发布了新的文献求助10
1分钟前
风雨哈佛路完成签到,获得积分10
1分钟前
666完成签到 ,获得积分10
1分钟前
李健应助嘟嘟采纳,获得10
2分钟前
忧虑的静柏完成签到 ,获得积分10
2分钟前
shuiwuming完成签到 ,获得积分10
2分钟前
2分钟前
David发布了新的文献求助10
2分钟前
David完成签到,获得积分10
2分钟前
Hello应助David采纳,获得10
2分钟前
典雅三颜完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
月儿完成签到 ,获得积分10
3分钟前
jadyzc发布了新的文献求助10
3分钟前
jason完成签到 ,获得积分10
3分钟前
Ray完成签到 ,获得积分10
3分钟前
sougardenist完成签到 ,获得积分10
3分钟前
孙老师完成签到 ,获得积分10
3分钟前
qiongqiong完成签到 ,获得积分10
3分钟前
lingling完成签到 ,获得积分10
3分钟前
hola完成签到,获得积分10
3分钟前
二牛完成签到,获得积分10
3分钟前
haralee完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569914
求助须知:如何正确求助?哪些是违规求助? 3991759
关于积分的说明 12356287
捐赠科研通 3664278
什么是DOI,文献DOI怎么找? 2019384
邀请新用户注册赠送积分活动 1053853
科研通“疑难数据库(出版商)”最低求助积分说明 941402