Exposing the Achilles’ heel of textual hate speech classifiers using indistinguishable adversarial examples

计算机科学 对抗制 鞋跟 人工智能 语音识别 自然语言处理 机器学习 医学 解剖
作者
Sajal Aggarwal,Dinesh Kumar Vishwakarma
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:254: 124278-124278 被引量:3
标识
DOI:10.1016/j.eswa.2024.124278
摘要

The accessibility of online hate speech has increased significantly, making it crucial for social-media companies to prioritize efforts to curb its spread. Although deep learning models demonstrate vulnerability to adversarial attacks, whether models fine-tuned for hate speech detection exhibit similar susceptibility remains underexplored. Textual adversarial attacks involve making subtle alterations to the original samples. These alterations are designed so that the adversarial examples produced can effectively deceive the target model, even when correctly classified by human observers. Though many approaches have been proposed to conduct word-level adversarial attacks on textual data, they face the obstacle of preserving the semantic coherence of texts during the generation of adversarial counterparts. Moreover, the adversarial examples produced are often easily distinguishable by human observers. This work presents a novel methodology that uses visually confusable glyphs and invisible characters to generate semantically and visually similar adversarial examples in a black-box setting. In the hate speech detection task context, our attack was effectively applied to several state-of-the-art deep learning models, fine-tuned on two benchmark datasets. The major contributions of this study are: (1) demonstrating the vulnerability of deep learning models fine-tuned for hate speech detection; (2) a novel attack framework based on a simple yet potent modification strategy; (3) superior outcomes in terms of accuracy degradation, attack success rate, average perturbation, semantic similarity, and perplexity when compared to existing baselines; (4) strict adherence to prescribed linguistic constraints while formulating adversarial samples; and (5) preservation of ground truth label while perturbing original input using imperceptible adversarial examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ShengShuoX完成签到,获得积分10
刚刚
1秒前
小山隹完成签到,获得积分10
2秒前
务实谷秋发布了新的文献求助10
3秒前
3秒前
逗号先生发布了新的文献求助10
4秒前
momeak完成签到,获得积分10
4秒前
4秒前
活力的彩虹完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
英俊的铭应助不吃折耳根采纳,获得10
6秒前
sukasuka发布了新的文献求助10
7秒前
wure10发布了新的文献求助10
8秒前
9秒前
xxking发布了新的文献求助10
10秒前
休眠火山发布了新的文献求助10
12秒前
guan发布了新的文献求助10
12秒前
ding应助血压低我学医采纳,获得10
13秒前
holmes完成签到,获得积分10
13秒前
皊晞完成签到 ,获得积分10
13秒前
脑洞疼应助hao采纳,获得10
14秒前
开心心完成签到,获得积分10
15秒前
16秒前
AO完成签到,获得积分10
17秒前
Youngman完成签到,获得积分10
20秒前
22秒前
liuwei发布了新的文献求助10
22秒前
努力加油煤老八完成签到 ,获得积分10
23秒前
现代的邑完成签到,获得积分10
25秒前
DuesKing发布了新的文献求助10
25秒前
25秒前
25秒前
hxh完成签到,获得积分10
26秒前
26秒前
希望天下0贩的0应助sclai采纳,获得10
28秒前
28秒前
guangshuang发布了新的文献求助20
29秒前
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154081
求助须知:如何正确求助?哪些是违规求助? 2804993
关于积分的说明 7862902
捐赠科研通 2463094
什么是DOI,文献DOI怎么找? 1311144
科研通“疑难数据库(出版商)”最低求助积分说明 629460
版权声明 601821