Online Knowledge Distillation for Machine Health Prognosis Considering Edge Deployment

蒸馏 计算机科学 人工智能 机器学习 人工神经网络 GSM演进的增强数据速率 软件部署 特征(语言学) 前提 特征提取 数据挖掘 软件工程 化学 有机化学 语言学 哲学
作者
Yudong Cao,Qing Ni,Minping Jia,Xiaoli Zhao,Xiaoan Yan
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (16): 27828-27839 被引量:1
标识
DOI:10.1109/jiot.2024.3404112
摘要

Complex neural networks with deep structures are beneficial for solving problems such as fault classification and health prediction of industrial equipment due to their powerful feature extraction capabilities. Unfortunately, corresponding complex models designed based on deep learning algorithms require huge computational and memory resources, making them difficult to achieve effective edge deployment. In order to solve this difficulty with practical industrial significance, this paper proposes an online knowledge distillation framework for machine health prognosis. Within this framework, the learned knowledge of complex networks can be distilled to simple networks that can be deployed on edge devices in sites. Specifically, the response-based knowledge distillation module, feature-based knowledge distillation module, and relation-based knowledge distillation module are respectively designed to achieve effective information transmission from different levels. Furthermore, the inherent differences between simple and complex networks have been fully considered for their impact on the efficiency of knowledge distillation, and an adaptive mutual learning strategy has been contrapuntally proposed to address this limitation. Multiple online knowledge distillation experiments were conducted on two different sets of run-to-failure datasets of mechanical key components with different pairs of complex and simple networks to verify the effectiveness of the proposed framework. The experimental results show that the simple student-networks can effectively improve prediction performance after receiving knowledge distillation from the complex teacher-networks, providing a new solution for machine health prognosis under the premise of edge deployment.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈荣完成签到 ,获得积分0
1秒前
火火火小朋友完成签到 ,获得积分10
1秒前
hu完成签到,获得积分10
3秒前
3秒前
4秒前
dyk完成签到,获得积分10
5秒前
研友_8Y05PZ完成签到,获得积分10
5秒前
无限的含羞草完成签到,获得积分10
5秒前
Wu发布了新的文献求助10
7秒前
小张完成签到 ,获得积分10
8秒前
所所应助cdsd采纳,获得10
9秒前
yukang完成签到,获得积分10
9秒前
qifeng完成签到,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
单薄天亦完成签到,获得积分10
15秒前
17秒前
雨兔儿完成签到,获得积分10
18秒前
活泼平凡完成签到,获得积分10
18秒前
科研通AI2S应助研友_8Y05PZ采纳,获得10
20秒前
欢呼的凌兰完成签到,获得积分10
21秒前
duoduozs完成签到,获得积分10
22秒前
南浔完成签到 ,获得积分10
23秒前
韭菜发布了新的文献求助10
23秒前
25秒前
26秒前
wnll完成签到,获得积分10
27秒前
Hiram完成签到,获得积分10
27秒前
FashionBoy应助韭菜采纳,获得10
29秒前
wnll发布了新的文献求助10
30秒前
如泣草芥完成签到,获得积分0
35秒前
zoe完成签到,获得积分10
35秒前
张元东完成签到 ,获得积分10
36秒前
36秒前
木辛艺完成签到,获得积分20
37秒前
39秒前
MJMO完成签到,获得积分10
40秒前
梅赛德斯奔驰完成签到,获得积分10
40秒前
笑点低的毛衣完成签到 ,获得积分10
42秒前
夕荀完成签到,获得积分10
42秒前
bias完成签到,获得积分10
44秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388631
求助须知:如何正确求助?哪些是违规求助? 3000838
关于积分的说明 8793982
捐赠科研通 2687109
什么是DOI,文献DOI怎么找? 1472001
科研通“疑难数据库(出版商)”最低求助积分说明 680683
邀请新用户注册赠送积分活动 673326