Predicting the Bioaccessibility of Soil Cd, Pb, and As with Advanced Machine Learning for Continental-Scale Soil Environmental Criteria Determination in China

反距离权重法 比例(比率) 冶炼 环境科学 土壤科学 多元插值 加权 土壤水分 统计 数学 化学 地理 地图学 医学 放射科 有机化学 双线性插值
作者
Kunting Xie,Jiajun Ou,Minghao He,Weijie Peng,Yong Yuan
标识
DOI:10.1021/envhealth.4c00035
摘要

Investigating the bioaccessibility of harmful inorganic elements in soil is crucial for understanding their behavior in the environment and accurately assessing the environmental risks associated with soil. Traditional batch experimental methods and linear models, however, are time-consuming and often fall short in precisely quantifying bioaccessibility. In this study, using 937 data points gathered from 56 journal articles, we developed machine learning models for three harmful inorganic elements, namely, Cd, Pb, and As. After thorough analysis, the model optimized through a boosting ensemble strategy demonstrated the best performance, with an average R2 of 0.95 and an RMSE of 0.25. We further employed SHAP values in conjunction with quantitative analysis to identify the key features that influence bioaccessibility. By utilizing the developed integrated models, we carried out predictions for 3002 data points across China, clarifying the bioaccessibility of cadmium (Cd), lead (Pb), and arsenic (As) in the soils of various sites and constructed a comprehensive spatial distribution map of China using the inverse distance weighting (IDW) interpolation method. Based on these findings, we further derived the soil environmental standards for metallurgical sites in China. Our observations from the collected data indicate a reduction in the number of sites exceeding the standard levels for Cd, Pb, and As in mining/smelting sites from 5, 58, and 14 to 1, 24, and 7, respectively. This research offers a precise and scientific approach for cross-regional risk assessment at the continental scale and lays a solid foundation for soil environmental management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hdy331完成签到,获得积分10
2秒前
哆小咪完成签到 ,获得积分10
3秒前
4秒前
5秒前
上官若男应助xxy采纳,获得10
5秒前
6秒前
6秒前
Vera完成签到,获得积分10
7秒前
劳永杰发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
温水煮青蛙完成签到 ,获得积分10
10秒前
10秒前
曹操发布了新的文献求助10
10秒前
11秒前
11秒前
李小猫发布了新的文献求助10
13秒前
13秒前
徐逊发布了新的文献求助10
15秒前
望春风完成签到,获得积分10
15秒前
爆米花应助YDX采纳,获得10
15秒前
CipherSage应助Boren采纳,获得10
16秒前
852应助又又采纳,获得10
16秒前
16秒前
Jasper应助RichardBillyham采纳,获得10
16秒前
17秒前
18秒前
starry完成签到 ,获得积分10
18秒前
Kvolu29发布了新的文献求助10
18秒前
20秒前
堀江真夏完成签到 ,获得积分10
21秒前
mof发布了新的文献求助10
21秒前
皮崇知发布了新的文献求助10
23秒前
刘苹完成签到 ,获得积分10
24秒前
连渡完成签到,获得积分10
25秒前
25秒前
李健应助Rita采纳,获得10
26秒前
思源应助劳永杰采纳,获得10
26秒前
cs完成签到,获得积分10
27秒前
乾乾发布了新的文献求助10
27秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959198
求助须知:如何正确求助?哪些是违规求助? 3505502
关于积分的说明 11124195
捐赠科研通 3237231
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824