Predicting the Bioaccessibility of Soil Cd, Pb, and As with Advanced Machine Learning for Continental-Scale Soil Environmental Criteria Determination in China

反距离权重法 比例(比率) 冶炼 环境科学 土壤科学 多元插值 加权 土壤水分 统计 数学 化学 地理 地图学 医学 有机化学 双线性插值 放射科
作者
Kunting Xie,Jiajun Ou,Minghao He,Weijie Peng,Yong Yuan
标识
DOI:10.1021/envhealth.4c00035
摘要

Investigating the bioaccessibility of harmful inorganic elements in soil is crucial for understanding their behavior in the environment and accurately assessing the environmental risks associated with soil. Traditional batch experimental methods and linear models, however, are time-consuming and often fall short in precisely quantifying bioaccessibility. In this study, using 937 data points gathered from 56 journal articles, we developed machine learning models for three harmful inorganic elements, namely, Cd, Pb, and As. After thorough analysis, the model optimized through a boosting ensemble strategy demonstrated the best performance, with an average R2 of 0.95 and an RMSE of 0.25. We further employed SHAP values in conjunction with quantitative analysis to identify the key features that influence bioaccessibility. By utilizing the developed integrated models, we carried out predictions for 3002 data points across China, clarifying the bioaccessibility of cadmium (Cd), lead (Pb), and arsenic (As) in the soils of various sites and constructed a comprehensive spatial distribution map of China using the inverse distance weighting (IDW) interpolation method. Based on these findings, we further derived the soil environmental standards for metallurgical sites in China. Our observations from the collected data indicate a reduction in the number of sites exceeding the standard levels for Cd, Pb, and As in mining/smelting sites from 5, 58, and 14 to 1, 24, and 7, respectively. This research offers a precise and scientific approach for cross-regional risk assessment at the continental scale and lays a solid foundation for soil environmental management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
燕yy完成签到,获得积分10
1秒前
2秒前
2秒前
ding应助zz采纳,获得10
2秒前
英姑应助myelin采纳,获得10
2秒前
邓敬燃发布了新的文献求助30
3秒前
学术蟑螂发布了新的文献求助10
3秒前
五月好难完成签到,获得积分10
3秒前
Zbx发布了新的文献求助10
3秒前
4秒前
lemonyu完成签到 ,获得积分10
4秒前
情怀应助薄荷软糖采纳,获得10
4秒前
4秒前
王丽娟应助科研通管家采纳,获得10
5秒前
smottom应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得30
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
5秒前
Jared应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
王丽娟应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
andrew12399发布了新的文献求助10
6秒前
王丽娟应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
五月好难发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798