Predicting the Bioaccessibility of Soil Cd, Pb, and As with Advanced Machine Learning for Continental-Scale Soil Environmental Criteria Determination in China

比例(比率) 环境科学 土壤科学 中国 环境化学 化学 地理 地图学 考古
作者
Kunting Xie,Jiajun Ou,Minghao He,Wei Peng,Yong Yuan
标识
DOI:10.1021/envhealth.4c00035
摘要

Investigating the bioaccessibility of harmful inorganic elements in soil is crucial for understanding their behavior in the environment and accurately assessing the environmental risks associated with soil. Traditional batch experimental methods and linear models, however, are time-consuming and often fall short in precisely quantifying bioaccessibility. In this study, using 937 data points gathered from 56 journal articles, we developed machine learning models for three harmful inorganic elements, namely, Cd, Pb, and As. After thorough analysis, the model optimized through a boosting ensemble strategy demonstrated the best performance, with an average R2 of 0.95 and an RMSE of 0.25. We further employed SHAP values in conjunction with quantitative analysis to identify the key features that influence bioaccessibility. By utilizing the developed integrated models, we carried out predictions for 3002 data points across China, clarifying the bioaccessibility of cadmium (Cd), lead (Pb), and arsenic (As) in the soils of various sites and constructed a comprehensive spatial distribution map of China using the inverse distance weighting (IDW) interpolation method. Based on these findings, we further derived the soil environmental standards for metallurgical sites in China. Our observations from the collected data indicate a reduction in the number of sites exceeding the standard levels for Cd, Pb, and As in mining/smelting sites from 5, 58, and 14 to 1, 24, and 7, respectively. This research offers a precise and scientific approach for cross-regional risk assessment at the continental scale and lays a solid foundation for soil environmental management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenpingchang完成签到,获得积分10
1秒前
情怀应助YY采纳,获得10
2秒前
自然秋柳发布了新的文献求助10
2秒前
SC完成签到,获得积分10
3秒前
科研通AI2S应助wancheng_采纳,获得10
4秒前
7秒前
风中的赛凤完成签到,获得积分20
7秒前
8秒前
雪落你看不见完成签到,获得积分10
8秒前
Renee应助zmuzhang2019采纳,获得10
9秒前
10秒前
priss111应助坤仔采纳,获得30
12秒前
张宝发布了新的文献求助10
13秒前
13秒前
YY发布了新的文献求助10
14秒前
14秒前
15秒前
阳洋完成签到,获得积分10
16秒前
caicaikan完成签到,获得积分10
17秒前
孝顺的猕猴桃完成签到,获得积分10
18秒前
汉堡包应助Yexidong采纳,获得10
18秒前
华仔应助gdh采纳,获得10
19秒前
20秒前
20秒前
顺心绮兰完成签到,获得积分10
23秒前
无限的冰蝶完成签到,获得积分20
24秒前
领导范儿应助丶氵一生里采纳,获得10
24秒前
拒绝头秃发布了新的文献求助10
25秒前
咖啡续命发布了新的文献求助10
25秒前
29秒前
31秒前
完美世界应助达芙妮采纳,获得10
31秒前
gdh发布了新的文献求助10
35秒前
37秒前
科研通AI2S应助风中的赛凤采纳,获得10
38秒前
38秒前
彭于晏应助小小li采纳,获得10
42秒前
完美世界应助赤岩采纳,获得10
45秒前
科研通AI2S应助wsl采纳,获得10
49秒前
519完成签到,获得积分10
50秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161611
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897655
捐赠科研通 2471797
什么是DOI,文献DOI怎么找? 1316160
科研通“疑难数据库(出版商)”最低求助积分说明 631222
版权声明 602112