已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the Bioaccessibility of Soil Cd, Pb, and As with Advanced Machine Learning for Continental-Scale Soil Environmental Criteria Determination in China

反距离权重法 比例(比率) 冶炼 环境科学 土壤科学 多元插值 加权 土壤水分 统计 数学 化学 地理 地图学 医学 放射科 有机化学 双线性插值
作者
Kunting Xie,Jiajun Ou,Minghao He,Weijie Peng,Yong Yuan
标识
DOI:10.1021/envhealth.4c00035
摘要

Investigating the bioaccessibility of harmful inorganic elements in soil is crucial for understanding their behavior in the environment and accurately assessing the environmental risks associated with soil. Traditional batch experimental methods and linear models, however, are time-consuming and often fall short in precisely quantifying bioaccessibility. In this study, using 937 data points gathered from 56 journal articles, we developed machine learning models for three harmful inorganic elements, namely, Cd, Pb, and As. After thorough analysis, the model optimized through a boosting ensemble strategy demonstrated the best performance, with an average R2 of 0.95 and an RMSE of 0.25. We further employed SHAP values in conjunction with quantitative analysis to identify the key features that influence bioaccessibility. By utilizing the developed integrated models, we carried out predictions for 3002 data points across China, clarifying the bioaccessibility of cadmium (Cd), lead (Pb), and arsenic (As) in the soils of various sites and constructed a comprehensive spatial distribution map of China using the inverse distance weighting (IDW) interpolation method. Based on these findings, we further derived the soil environmental standards for metallurgical sites in China. Our observations from the collected data indicate a reduction in the number of sites exceeding the standard levels for Cd, Pb, and As in mining/smelting sites from 5, 58, and 14 to 1, 24, and 7, respectively. This research offers a precise and scientific approach for cross-regional risk assessment at the continental scale and lays a solid foundation for soil environmental management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助ZZZ采纳,获得10
刚刚
嘟嘟嘟嘟完成签到 ,获得积分10
1秒前
6秒前
6秒前
昏睡的砖家完成签到,获得积分10
6秒前
8秒前
Yy完成签到,获得积分20
8秒前
10秒前
婷123完成签到 ,获得积分10
11秒前
斯文败类应助shhyyds采纳,获得10
11秒前
好事发生发布了新的文献求助10
11秒前
Afterlife34发布了新的文献求助10
12秒前
智丹发布了新的文献求助10
14秒前
科研通AI5应助凶凶采纳,获得10
15秒前
酷波er应助典雅冬寒采纳,获得10
15秒前
16秒前
tt完成签到,获得积分10
16秒前
滕雪嘻嘻嘻嘻嘻完成签到,获得积分10
17秒前
风清扬完成签到,获得积分0
17秒前
ZZZ发布了新的文献求助10
20秒前
FashionBoy应助ycc采纳,获得10
20秒前
黄铃铃关注了科研通微信公众号
22秒前
黎明深雪完成签到 ,获得积分10
22秒前
汉城发布了新的文献求助10
23秒前
24秒前
王泽明完成签到,获得积分10
25秒前
阿鱼发布了新的文献求助30
26秒前
ysy完成签到,获得积分10
26秒前
淡然绝山完成签到,获得积分10
28秒前
SciGPT应助无私的梦凡采纳,获得10
30秒前
丘比特应助科研通管家采纳,获得10
33秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
科目三应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
GPTea应助科研通管家采纳,获得20
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
脑洞疼应助科研通管家采纳,获得10
33秒前
蓝瘦香菇发布了新的文献求助10
36秒前
桐桐应助ComeOn采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197813
求助须知:如何正确求助?哪些是违规求助? 4378999
关于积分的说明 13637390
捐赠科研通 4234829
什么是DOI,文献DOI怎么找? 2323003
邀请新用户注册赠送积分活动 1321071
关于科研通互助平台的介绍 1271854