Predicting the Bioaccessibility of Soil Cd, Pb, and As with Advanced Machine Learning for Continental-Scale Soil Environmental Criteria Determination in China

反距离权重法 比例(比率) 冶炼 环境科学 土壤科学 多元插值 加权 土壤水分 统计 数学 化学 地理 地图学 医学 有机化学 双线性插值 放射科
作者
Kunting Xie,Jiajun Ou,Minghao He,Weijie Peng,Yong Yuan
标识
DOI:10.1021/envhealth.4c00035
摘要

Investigating the bioaccessibility of harmful inorganic elements in soil is crucial for understanding their behavior in the environment and accurately assessing the environmental risks associated with soil. Traditional batch experimental methods and linear models, however, are time-consuming and often fall short in precisely quantifying bioaccessibility. In this study, using 937 data points gathered from 56 journal articles, we developed machine learning models for three harmful inorganic elements, namely, Cd, Pb, and As. After thorough analysis, the model optimized through a boosting ensemble strategy demonstrated the best performance, with an average R2 of 0.95 and an RMSE of 0.25. We further employed SHAP values in conjunction with quantitative analysis to identify the key features that influence bioaccessibility. By utilizing the developed integrated models, we carried out predictions for 3002 data points across China, clarifying the bioaccessibility of cadmium (Cd), lead (Pb), and arsenic (As) in the soils of various sites and constructed a comprehensive spatial distribution map of China using the inverse distance weighting (IDW) interpolation method. Based on these findings, we further derived the soil environmental standards for metallurgical sites in China. Our observations from the collected data indicate a reduction in the number of sites exceeding the standard levels for Cd, Pb, and As in mining/smelting sites from 5, 58, and 14 to 1, 24, and 7, respectively. This research offers a precise and scientific approach for cross-regional risk assessment at the continental scale and lays a solid foundation for soil environmental management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
王帅发布了新的文献求助10
2秒前
危机的绯发布了新的文献求助10
2秒前
鱼鱼完成签到,获得积分10
2秒前
希望天下0贩的0应助lym54采纳,获得10
2秒前
科研通AI6应助木子采纳,获得10
2秒前
2秒前
3秒前
愉快的海完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
Azyyyy完成签到,获得积分10
7秒前
充电宝应助吃薯条采纳,获得10
7秒前
迅速斑马完成签到,获得积分10
7秒前
尔池完成签到,获得积分10
8秒前
nuonuo发布了新的文献求助10
8秒前
XZB完成签到,获得积分10
8秒前
陈砍砍完成签到 ,获得积分10
9秒前
9秒前
愉快的海发布了新的文献求助10
10秒前
10秒前
万海发布了新的文献求助10
11秒前
周山山完成签到 ,获得积分10
11秒前
ming完成签到 ,获得积分10
12秒前
无花果应助liyukun采纳,获得10
12秒前
12秒前
orixero应助紧张的毛衣采纳,获得10
13秒前
George发布了新的文献求助10
14秒前
CipherSage应助yxdjzwx采纳,获得20
16秒前
小富婆完成签到,获得积分10
16秒前
16秒前
pjson15376449841完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
深情安青应助章半仙采纳,获得10
19秒前
19秒前
doctor小陈发布了新的文献求助10
19秒前
科目三应助高兴的万宝路采纳,获得10
20秒前
乐乐应助顾文采纳,获得10
20秒前
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812