Predicting the Bioaccessibility of Soil Cd, Pb, and As with Advanced Machine Learning for Continental-Scale Soil Environmental Criteria Determination in China

反距离权重法 比例(比率) 冶炼 环境科学 土壤科学 多元插值 加权 土壤水分 统计 数学 化学 地理 地图学 医学 有机化学 双线性插值 放射科
作者
Kunting Xie,Jiajun Ou,Minghao He,Weijie Peng,Yong Yuan
标识
DOI:10.1021/envhealth.4c00035
摘要

Investigating the bioaccessibility of harmful inorganic elements in soil is crucial for understanding their behavior in the environment and accurately assessing the environmental risks associated with soil. Traditional batch experimental methods and linear models, however, are time-consuming and often fall short in precisely quantifying bioaccessibility. In this study, using 937 data points gathered from 56 journal articles, we developed machine learning models for three harmful inorganic elements, namely, Cd, Pb, and As. After thorough analysis, the model optimized through a boosting ensemble strategy demonstrated the best performance, with an average R2 of 0.95 and an RMSE of 0.25. We further employed SHAP values in conjunction with quantitative analysis to identify the key features that influence bioaccessibility. By utilizing the developed integrated models, we carried out predictions for 3002 data points across China, clarifying the bioaccessibility of cadmium (Cd), lead (Pb), and arsenic (As) in the soils of various sites and constructed a comprehensive spatial distribution map of China using the inverse distance weighting (IDW) interpolation method. Based on these findings, we further derived the soil environmental standards for metallurgical sites in China. Our observations from the collected data indicate a reduction in the number of sites exceeding the standard levels for Cd, Pb, and As in mining/smelting sites from 5, 58, and 14 to 1, 24, and 7, respectively. This research offers a precise and scientific approach for cross-regional risk assessment at the continental scale and lays a solid foundation for soil environmental management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ting完成签到 ,获得积分10
1秒前
1秒前
徐恺完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
Jasper应助欢呼豆芽采纳,获得10
2秒前
3秒前
所所应助善良的ltl采纳,获得10
4秒前
shenerqing发布了新的文献求助10
4秒前
小杜发布了新的文献求助10
4秒前
4秒前
xueshu发布了新的文献求助10
4秒前
风住的街完成签到,获得积分10
4秒前
难过板栗发布了新的文献求助10
4秒前
666发布了新的文献求助10
4秒前
5秒前
薇子完成签到,获得积分10
5秒前
5秒前
5秒前
情怀应助能干耳机采纳,获得10
6秒前
CodeCraft应助wyiii采纳,获得10
6秒前
dd完成签到,获得积分10
6秒前
晏之傲者发布了新的文献求助30
6秒前
6秒前
Hina完成签到,获得积分10
6秒前
7秒前
7秒前
JokerCing完成签到,获得积分10
7秒前
wkjfh应助1111111111111采纳,获得10
7秒前
山水完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
ytnju发布了新的文献求助10
9秒前
林非鹿发布了新的文献求助10
10秒前
orixero应助天空之城采纳,获得10
10秒前
璇璇完成签到,获得积分10
10秒前
hr发布了新的文献求助10
10秒前
浮游应助Lx采纳,获得10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401