已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the Bioaccessibility of Soil Cd, Pb, and As with Advanced Machine Learning for Continental-Scale Soil Environmental Criteria Determination in China

反距离权重法 比例(比率) 冶炼 环境科学 土壤科学 多元插值 加权 土壤水分 统计 数学 化学 地理 地图学 医学 有机化学 双线性插值 放射科
作者
Kunting Xie,Jiajun Ou,Minghao He,Weijie Peng,Yong Yuan
标识
DOI:10.1021/envhealth.4c00035
摘要

Investigating the bioaccessibility of harmful inorganic elements in soil is crucial for understanding their behavior in the environment and accurately assessing the environmental risks associated with soil. Traditional batch experimental methods and linear models, however, are time-consuming and often fall short in precisely quantifying bioaccessibility. In this study, using 937 data points gathered from 56 journal articles, we developed machine learning models for three harmful inorganic elements, namely, Cd, Pb, and As. After thorough analysis, the model optimized through a boosting ensemble strategy demonstrated the best performance, with an average R2 of 0.95 and an RMSE of 0.25. We further employed SHAP values in conjunction with quantitative analysis to identify the key features that influence bioaccessibility. By utilizing the developed integrated models, we carried out predictions for 3002 data points across China, clarifying the bioaccessibility of cadmium (Cd), lead (Pb), and arsenic (As) in the soils of various sites and constructed a comprehensive spatial distribution map of China using the inverse distance weighting (IDW) interpolation method. Based on these findings, we further derived the soil environmental standards for metallurgical sites in China. Our observations from the collected data indicate a reduction in the number of sites exceeding the standard levels for Cd, Pb, and As in mining/smelting sites from 5, 58, and 14 to 1, 24, and 7, respectively. This research offers a precise and scientific approach for cross-regional risk assessment at the continental scale and lays a solid foundation for soil environmental management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研学术完成签到,获得积分10
4秒前
全鑫发布了新的文献求助10
4秒前
义气的青枫完成签到 ,获得积分10
5秒前
fei完成签到 ,获得积分10
5秒前
6秒前
Brenna完成签到 ,获得积分10
8秒前
ccm应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
mashibeo应助科研通管家采纳,获得10
9秒前
9秒前
pluto应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
mashibeo应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得40
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
共享精神应助xwz626采纳,获得10
10秒前
reece完成签到 ,获得积分10
11秒前
14秒前
钰L发布了新的文献求助10
14秒前
优美的莹芝完成签到,获得积分10
19秒前
全鑫完成签到,获得积分10
20秒前
123关注了科研通微信公众号
20秒前
Ade完成签到,获得积分10
21秒前
哈哈完成签到 ,获得积分10
23秒前
跳跃的鹏飞完成签到 ,获得积分0
24秒前
博弈春秋发布了新的文献求助10
24秒前
科研通AI6应助Jodie采纳,获得10
25秒前
斯文败类应助是阿瑾呀采纳,获得10
26秒前
lmplzzp发布了新的文献求助30
27秒前
鱼鱼籽不认路完成签到 ,获得积分10
28秒前
fx完成签到 ,获得积分10
28秒前
bastien完成签到,获得积分10
30秒前
矜天完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458682
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296618
捐赠科研通 4489782
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424502