级联
纳米技术
表面改性
材料科学
化学
色谱法
物理化学
作者
Qingfeng Yao,Lijuan Liu,Zheng Cai,Mingxia Meng,Shuyue Luo,Jingming Gong
标识
DOI:10.1016/j.bios.2024.116470
摘要
The aggravation of antibiotic resistance genes (ARGs) in the environment has posed a significant global health crisis. Accurate evaluation of ARGs levels in a facile manner is a pressing issue for environmental surveillance. Here, we demonstrate a unique dumbbell-shaped cascade nanozyme for visual/photoelectrochemical (PEC) dual-mode detection of ARGs. Gold nanoparticles (AuNPs) with tunable exposed facets are controllably anchored onto ZIF-8 dodecahedrons, exhibiting glucose oxidase (GOx)-like (ZIF-8@Au/G) and peroxidase (POD)-like (ZIF-8@Au/P) activities. Upon the occurrence of ARGs, an asymmetric cascade-amplified "dumbbell" configuration is spontaneously generated via target-induced DNA hybridization, comprising GOx-like ZIF-8@Au/G with capture DNA on one side and POD-like ZIF-8@Au/P with signal DNA on the opposite side. Such a cascade nano-system can efficiently oxidize colorless 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) into its green oxidation state and synergistically decompose H2O2, realizing colorimetric/PEC dual-mode ARGs detection with a detection limit of 0.112 nM. The applicability of the present bioassay is validated through measuring ARGs in real sludge samples. This work suggests the possibility to rationally design task-specific nanozymes and develop target-responsive nano-cascade assays for environmental monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI