Genetically Optimised SMOTE-based Adversarial Discriminative Domain Adaptation for Rotor Fault Diagnosis at Variable Operating Conditions

判别式 转子(电动) 对抗制 断层(地质) 域适应 人工智能 变量(数学) 计算机科学 模式识别(心理学) 适应(眼睛) 领域(数学分析) 机器学习 工程类 生物 数学 神经科学 电气工程 分类器(UML) 古生物学 数学分析
作者
Sudhar Rajagopalan,Ashish Purohit,Jaskaran Singh
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106109-106109
标识
DOI:10.1088/1361-6501/ad5b7d
摘要

Abstract For safety, reliability, and uninterrupted output of gas turbines, aviation engines, power-generating equipment, pumps, gears, compressors etc, rotor mass imbalance must be detected and diagnosed to avoid catastrophic failure. Industry 4.0 relies on predictive digital maintenance and deep learning-based convolutional neural network (CNN), which predicts defects but fails if the operating conditions change. Research studies in various fields indicate that the domain shift issue occurs due to source and target samples being from different domains, which reduces prediction capability. Moreover, research studies are scarce in examining prediction capability under varying operating speeds for rotor mass imbalance. Hence, this research proposes the adversarial discriminative domain adaptation (ADDA) technique which predicts machine failures under various operational conditions. The efficacy of ADDA has been explored by introducing 1D-CNN as a source and a target encoder inside ADDA’s architecture to take advantage of CNN’s feature extraction capability. Further, this research effectively tackles CNN’s inherent issues of overfitting and hyperparameters value selection. Furthermore, The real-world scenario has more healthy samples than fault condition samples, causing a multiclass imbalance in sample data, which affects the classification decision boundary and causes biased prediction. Hence, the proposed methodology first addresses the class imbalance through synthetic minority oversampling (SMOTE), then genetic algorithm optimizes 1D-CNN’s hyperparameters, and the effective dropout layer positioning solves the overfitting. Finally, the deep learning-based SMOTE_ADDA_GO-1D-CNN decreases domain discrepancy with ADDA. The proposed methodology’s efficacy has been explored through F1-Score, which is used as multiclass evaluation metrics, and it has been benchmarked against standard machine learning and deep learning algorithms. The test results of the proposed methodology surpassed all of them with maximum prediction accuracy. Thus, this study contributes to rotor massimbalance detection and diagnosis for multiclass imbalanced data under varying operational conditions by successfully overcoming potential challenges during fault prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助西柚柠檬采纳,获得10
刚刚
念梦完成签到,获得积分10
刚刚
芝意CHEAE完成签到 ,获得积分10
1秒前
2秒前
潇洒的紫易完成签到,获得积分10
3秒前
3秒前
Yuri发布了新的文献求助10
3秒前
大方的契完成签到,获得积分10
4秒前
5秒前
明天见发布了新的文献求助10
6秒前
踏实语海完成签到,获得积分10
6秒前
yan123完成签到,获得积分10
6秒前
shin0324发布了新的文献求助10
7秒前
赘婿应助与一人同游采纳,获得10
7秒前
虚幻诗柳完成签到,获得积分10
10秒前
大方的契发布了新的文献求助10
12秒前
changping应助come采纳,获得100
12秒前
12秒前
luozejun完成签到,获得积分10
14秒前
酷波er应助李陈采纳,获得10
15秒前
Lucas应助宋贺贺采纳,获得10
16秒前
哈哈环完成签到 ,获得积分10
16秒前
16秒前
qnd关注了科研通微信公众号
16秒前
gqq完成签到,获得积分10
17秒前
ZJFL完成签到,获得积分10
18秒前
18秒前
19秒前
唯旧发布了新的文献求助10
19秒前
12345完成签到,获得积分10
19秒前
Yuri完成签到,获得积分10
20秒前
21秒前
21秒前
rumengzhuo完成签到,获得积分10
21秒前
22秒前
鳗鱼不尤完成签到,获得积分10
22秒前
充电宝应助可爱丹彤采纳,获得10
22秒前
爆学的狗发布了新的文献求助10
23秒前
绮山发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305017
求助须知:如何正确求助?哪些是违规求助? 4451211
关于积分的说明 13851392
捐赠科研通 4338545
什么是DOI,文献DOI怎么找? 2381993
邀请新用户注册赠送积分活动 1377139
关于科研通互助平台的介绍 1344501