Genetically Optimised SMOTE-based Adversarial Discriminative Domain Adaptation for Rotor Fault Diagnosis at Variable Operating Conditions

判别式 转子(电动) 对抗制 断层(地质) 域适应 人工智能 变量(数学) 计算机科学 模式识别(心理学) 适应(眼睛) 领域(数学分析) 机器学习 工程类 生物 数学 神经科学 电气工程 分类器(UML) 古生物学 数学分析
作者
Sudhar Rajagopalan,Ashish Purohit,Jaskaran Singh
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106109-106109
标识
DOI:10.1088/1361-6501/ad5b7d
摘要

Abstract For safety, reliability, and uninterrupted output of gas turbines, aviation engines, power-generating equipment, pumps, gears, compressors etc, rotor mass imbalance must be detected and diagnosed to avoid catastrophic failure. Industry 4.0 relies on predictive digital maintenance and deep learning-based convolutional neural network (CNN), which predicts defects but fails if the operating conditions change. Research studies in various fields indicate that the domain shift issue occurs due to source and target samples being from different domains, which reduces prediction capability. Moreover, research studies are scarce in examining prediction capability under varying operating speeds for rotor mass imbalance. Hence, this research proposes the adversarial discriminative domain adaptation (ADDA) technique which predicts machine failures under various operational conditions. The efficacy of ADDA has been explored by introducing 1D-CNN as a source and a target encoder inside ADDA’s architecture to take advantage of CNN’s feature extraction capability. Further, this research effectively tackles CNN’s inherent issues of overfitting and hyperparameters value selection. Furthermore, The real-world scenario has more healthy samples than fault condition samples, causing a multiclass imbalance in sample data, which affects the classification decision boundary and causes biased prediction. Hence, the proposed methodology first addresses the class imbalance through synthetic minority oversampling (SMOTE), then genetic algorithm optimizes 1D-CNN’s hyperparameters, and the effective dropout layer positioning solves the overfitting. Finally, the deep learning-based SMOTE_ADDA_GO-1D-CNN decreases domain discrepancy with ADDA. The proposed methodology’s efficacy has been explored through F1-Score, which is used as multiclass evaluation metrics, and it has been benchmarked against standard machine learning and deep learning algorithms. The test results of the proposed methodology surpassed all of them with maximum prediction accuracy. Thus, this study contributes to rotor massimbalance detection and diagnosis for multiclass imbalanced data under varying operational conditions by successfully overcoming potential challenges during fault prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晶晶完成签到,获得积分10
1秒前
1秒前
小包包发布了新的文献求助10
2秒前
2秒前
wusj120发布了新的文献求助10
2秒前
calmxp完成签到,获得积分10
2秒前
2秒前
wan完成签到,获得积分10
3秒前
芋泥小天才完成签到,获得积分10
3秒前
求知发布了新的文献求助100
4秒前
玩命的长颈鹿完成签到,获得积分20
4秒前
小涛哥完成签到 ,获得积分10
5秒前
煎妮发布了新的文献求助10
5秒前
LQ完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
樱桃儿完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
左耳钉应助Tonson采纳,获得30
8秒前
曾经的康乃馨完成签到 ,获得积分20
8秒前
8秒前
8秒前
1234发布了新的文献求助10
8秒前
yuncong323发布了新的文献求助10
9秒前
小包包完成签到,获得积分10
9秒前
友好的西牛关注了科研通微信公众号
10秒前
夏沫完成签到,获得积分10
10秒前
Jerry完成签到,获得积分20
10秒前
细心的安雁完成签到,获得积分10
10秒前
niepan完成签到,获得积分10
11秒前
11秒前
wusj120完成签到,获得积分10
11秒前
科研发布了新的文献求助10
12秒前
斯文败类应助小陈同学采纳,获得10
12秒前
zhu发布了新的文献求助10
12秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492