Genetically Optimised SMOTE-based Adversarial Discriminative Domain Adaptation for Rotor Fault Diagnosis at Variable Operating Conditions

判别式 转子(电动) 对抗制 断层(地质) 域适应 人工智能 变量(数学) 计算机科学 模式识别(心理学) 适应(眼睛) 领域(数学分析) 机器学习 工程类 生物 数学 神经科学 电气工程 分类器(UML) 古生物学 数学分析
作者
Sudhar Rajagopalan,Ashish Purohit,Jaskaran Singh
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106109-106109
标识
DOI:10.1088/1361-6501/ad5b7d
摘要

Abstract For safety, reliability, and uninterrupted output of gas turbines, aviation engines, power-generating equipment, pumps, gears, compressors etc, rotor mass imbalance must be detected and diagnosed to avoid catastrophic failure. Industry 4.0 relies on predictive digital maintenance and deep learning-based convolutional neural network (CNN), which predicts defects but fails if the operating conditions change. Research studies in various fields indicate that the domain shift issue occurs due to source and target samples being from different domains, which reduces prediction capability. Moreover, research studies are scarce in examining prediction capability under varying operating speeds for rotor mass imbalance. Hence, this research proposes the adversarial discriminative domain adaptation (ADDA) technique which predicts machine failures under various operational conditions. The efficacy of ADDA has been explored by introducing 1D-CNN as a source and a target encoder inside ADDA’s architecture to take advantage of CNN’s feature extraction capability. Further, this research effectively tackles CNN’s inherent issues of overfitting and hyperparameters value selection. Furthermore, The real-world scenario has more healthy samples than fault condition samples, causing a multiclass imbalance in sample data, which affects the classification decision boundary and causes biased prediction. Hence, the proposed methodology first addresses the class imbalance through synthetic minority oversampling (SMOTE), then genetic algorithm optimizes 1D-CNN’s hyperparameters, and the effective dropout layer positioning solves the overfitting. Finally, the deep learning-based SMOTE_ADDA_GO-1D-CNN decreases domain discrepancy with ADDA. The proposed methodology’s efficacy has been explored through F1-Score, which is used as multiclass evaluation metrics, and it has been benchmarked against standard machine learning and deep learning algorithms. The test results of the proposed methodology surpassed all of them with maximum prediction accuracy. Thus, this study contributes to rotor massimbalance detection and diagnosis for multiclass imbalanced data under varying operational conditions by successfully overcoming potential challenges during fault prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助vdfr采纳,获得10
刚刚
刚刚
张莜莜发布了新的文献求助10
1秒前
1秒前
MYYY完成签到,获得积分10
2秒前
科研进化中完成签到,获得积分10
2秒前
风趣的灵枫完成签到 ,获得积分10
3秒前
4秒前
4秒前
我要论文完成签到,获得积分10
4秒前
明明睡不醒完成签到,获得积分10
4秒前
ok好好发布了新的文献求助10
5秒前
菠萝葡萄完成签到,获得积分10
5秒前
乐空思应助taozhiqi采纳,获得10
5秒前
6秒前
Stefan发布了新的文献求助10
7秒前
糖糖完成签到,获得积分10
8秒前
8秒前
科研通AI6应助jiw采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
笨笨的秋蝶完成签到,获得积分10
10秒前
11秒前
聪明灭绝发布了新的文献求助10
11秒前
Jasper应助前行者采纳,获得30
11秒前
杜松子完成签到,获得积分10
11秒前
酷酷的采珊完成签到,获得积分10
11秒前
lulu8382发布了新的文献求助10
12秒前
淡淡无声发布了新的文献求助10
13秒前
英吉利25发布了新的文献求助10
13秒前
13秒前
开朗的紫萍完成签到,获得积分10
13秒前
13秒前
眼睛大的傲菡完成签到,获得积分10
14秒前
陈陈陈发布了新的文献求助10
16秒前
16秒前
17秒前
chenkaixin发布了新的文献求助10
17秒前
树懒在橘子洲数星星完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637144
求助须知:如何正确求助?哪些是违规求助? 4742794
关于积分的说明 14998033
捐赠科研通 4795378
什么是DOI,文献DOI怎么找? 2561930
邀请新用户注册赠送积分活动 1521455
关于科研通互助平台的介绍 1481513