亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Genetically Optimised SMOTE-based Adversarial Discriminative Domain Adaptation for Rotor Fault Diagnosis at Variable Operating Conditions

判别式 转子(电动) 对抗制 断层(地质) 域适应 人工智能 变量(数学) 计算机科学 模式识别(心理学) 适应(眼睛) 领域(数学分析) 机器学习 工程类 生物 数学 神经科学 电气工程 分类器(UML) 古生物学 数学分析
作者
Sudhar Rajagopalan,Ashish Purohit,Jaskaran Singh
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106109-106109
标识
DOI:10.1088/1361-6501/ad5b7d
摘要

Abstract For safety, reliability, and uninterrupted output of gas turbines, aviation engines, power-generating equipment, pumps, gears, compressors etc, rotor mass imbalance must be detected and diagnosed to avoid catastrophic failure. Industry 4.0 relies on predictive digital maintenance and deep learning-based convolutional neural network (CNN), which predicts defects but fails if the operating conditions change. Research studies in various fields indicate that the domain shift issue occurs due to source and target samples being from different domains, which reduces prediction capability. Moreover, research studies are scarce in examining prediction capability under varying operating speeds for rotor mass imbalance. Hence, this research proposes the adversarial discriminative domain adaptation (ADDA) technique which predicts machine failures under various operational conditions. The efficacy of ADDA has been explored by introducing 1D-CNN as a source and a target encoder inside ADDA’s architecture to take advantage of CNN’s feature extraction capability. Further, this research effectively tackles CNN’s inherent issues of overfitting and hyperparameters value selection. Furthermore, The real-world scenario has more healthy samples than fault condition samples, causing a multiclass imbalance in sample data, which affects the classification decision boundary and causes biased prediction. Hence, the proposed methodology first addresses the class imbalance through synthetic minority oversampling (SMOTE), then genetic algorithm optimizes 1D-CNN’s hyperparameters, and the effective dropout layer positioning solves the overfitting. Finally, the deep learning-based SMOTE_ADDA_GO-1D-CNN decreases domain discrepancy with ADDA. The proposed methodology’s efficacy has been explored through F1-Score, which is used as multiclass evaluation metrics, and it has been benchmarked against standard machine learning and deep learning algorithms. The test results of the proposed methodology surpassed all of them with maximum prediction accuracy. Thus, this study contributes to rotor massimbalance detection and diagnosis for multiclass imbalanced data under varying operational conditions by successfully overcoming potential challenges during fault prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eatanicecube完成签到,获得积分10
1秒前
15秒前
成成鹅了完成签到 ,获得积分10
24秒前
57秒前
哈哈哈哈完成签到 ,获得积分10
1分钟前
洞两发布了新的文献求助10
1分钟前
科研通AI6应助烛夜黎采纳,获得10
1分钟前
1分钟前
洞两发布了新的文献求助10
1分钟前
137完成签到,获得积分20
2分钟前
2分钟前
2分钟前
科研通AI6应助emnjkl采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
烛夜黎发布了新的文献求助10
3分钟前
顾矜应助烛夜黎采纳,获得10
3分钟前
3分钟前
3分钟前
科研通AI6应助lulu采纳,获得10
4分钟前
科研通AI6应助lulu采纳,获得10
4分钟前
科研通AI6应助lulu采纳,获得10
4分钟前
科研通AI6应助lulu采纳,获得10
4分钟前
啦啦啦啦啦完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
ALpha发布了新的文献求助10
4分钟前
4分钟前
真实的瑾瑜完成签到 ,获得积分10
4分钟前
4分钟前
ALpha完成签到,获得积分10
5分钟前
5分钟前
科研小白菜完成签到,获得积分10
5分钟前
GL发布了新的文献求助10
5分钟前
5分钟前
5分钟前
聪明怜阳发布了新的文献求助10
5分钟前
orixero应助GL采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488538
求助须知:如何正确求助?哪些是违规求助? 4587379
关于积分的说明 14413773
捐赠科研通 4518750
什么是DOI,文献DOI怎么找? 2476038
邀请新用户注册赠送积分活动 1461532
关于科研通互助平台的介绍 1434442