清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Genetically Optimised SMOTE-based Adversarial Discriminative Domain Adaptation for Rotor Fault Diagnosis at Variable Operating Conditions

判别式 转子(电动) 对抗制 断层(地质) 域适应 人工智能 变量(数学) 计算机科学 模式识别(心理学) 适应(眼睛) 领域(数学分析) 机器学习 工程类 生物 数学 神经科学 电气工程 分类器(UML) 古生物学 数学分析
作者
Sudhar Rajagopalan,Ashish Purohit,Jaskaran Singh
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106109-106109
标识
DOI:10.1088/1361-6501/ad5b7d
摘要

Abstract For safety, reliability, and uninterrupted output of gas turbines, aviation engines, power-generating equipment, pumps, gears, compressors etc, rotor mass imbalance must be detected and diagnosed to avoid catastrophic failure. Industry 4.0 relies on predictive digital maintenance and deep learning-based convolutional neural network (CNN), which predicts defects but fails if the operating conditions change. Research studies in various fields indicate that the domain shift issue occurs due to source and target samples being from different domains, which reduces prediction capability. Moreover, research studies are scarce in examining prediction capability under varying operating speeds for rotor mass imbalance. Hence, this research proposes the adversarial discriminative domain adaptation (ADDA) technique which predicts machine failures under various operational conditions. The efficacy of ADDA has been explored by introducing 1D-CNN as a source and a target encoder inside ADDA’s architecture to take advantage of CNN’s feature extraction capability. Further, this research effectively tackles CNN’s inherent issues of overfitting and hyperparameters value selection. Furthermore, The real-world scenario has more healthy samples than fault condition samples, causing a multiclass imbalance in sample data, which affects the classification decision boundary and causes biased prediction. Hence, the proposed methodology first addresses the class imbalance through synthetic minority oversampling (SMOTE), then genetic algorithm optimizes 1D-CNN’s hyperparameters, and the effective dropout layer positioning solves the overfitting. Finally, the deep learning-based SMOTE_ADDA_GO-1D-CNN decreases domain discrepancy with ADDA. The proposed methodology’s efficacy has been explored through F1-Score, which is used as multiclass evaluation metrics, and it has been benchmarked against standard machine learning and deep learning algorithms. The test results of the proposed methodology surpassed all of them with maximum prediction accuracy. Thus, this study contributes to rotor massimbalance detection and diagnosis for multiclass imbalanced data under varying operational conditions by successfully overcoming potential challenges during fault prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wciphone发布了新的文献求助10
1秒前
2秒前
虚幻念寒完成签到 ,获得积分10
9秒前
16秒前
16秒前
23秒前
白华苍松发布了新的文献求助10
28秒前
xhsz1111完成签到 ,获得积分10
32秒前
BowieHuang应助科研通管家采纳,获得10
33秒前
在水一方应助wciphone采纳,获得10
50秒前
1分钟前
1分钟前
Arctic完成签到 ,获得积分10
1分钟前
FMHChan完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
婉莹完成签到 ,获得积分0
2分钟前
大饼完成签到 ,获得积分10
2分钟前
2分钟前
wciphone发布了新的文献求助10
2分钟前
xuexi完成签到 ,获得积分10
2分钟前
远方完成签到 ,获得积分10
2分钟前
tianshanfeihe完成签到 ,获得积分10
2分钟前
BowieHuang应助Omni采纳,获得20
2分钟前
2分钟前
年轻的凝云完成签到 ,获得积分10
2分钟前
糟糕的翅膀完成签到,获得积分10
2分钟前
科研通AI6应助wciphone采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
白华苍松发布了新的文献求助10
3分钟前
zzh完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
学生信的大叔完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534481
求助须知:如何正确求助?哪些是违规求助? 4622551
关于积分的说明 14582640
捐赠科研通 4562673
什么是DOI,文献DOI怎么找? 2500297
邀请新用户注册赠送积分活动 1479832
关于科研通互助平台的介绍 1451027