Using Artificial Intelligence to Improve the Accuracy of a Wrist-Worn, Noninvasive Glucose Monitor: A Pilot Study

手腕 连续血糖监测 血糖自我监测 医学 计算机科学 人工智能 物理医学与康复 糖尿病 1型糖尿病 外科 内分泌学
作者
Muhammad Rafaqat Ali Qureshi,Stephen C. Bain,Stephen D. Luzio,Consuelo Handy,Daniel J. Fowles,Bradley Love,K. Wareham,Lotti Barlow,Gareth Dunseath,Jonathan Crane,Isamar Carrillo Masso,Jean Rogers Ryan,Mohamed Sabih Chaudhry
出处
期刊:Journal of diabetes science and technology [SAGE]
标识
DOI:10.1177/19322968241252819
摘要

Background: Self-monitoring of glucose is important to the successful management of diabetes; however, existing monitoring methods require a degree of invasive measurement which can be unpleasant for users. This study investigates the accuracy of a noninvasive glucose monitoring system that analyses spectral variations in microwave signals. Methods: An open-label, pilot design study was conducted with four cohorts (N = 5/cohort). In each session, a dial-resonating sensor (DRS) attached to the wrist automatically collected data every 60 seconds, with a novel artificial intelligence (AI) model converting signal resonance output to a glucose prediction. Plasma glucose was measured in venous blood samples every 5 minutes for Cohorts 1 to 3 and every 10 minutes for Cohort 4. Accuracy was evaluated by calculating the mean absolute relative difference (MARD) between the DRS and plasma glucose values. Results: Accurate plasma glucose predictions were obtained across all four cohorts using a random sampling procedure applied to the full four-cohort data set, with an average MARD of 10.3%. A statistical analysis demonstrates the quality of these predictions, with a surveillance error grid (SEG) plot indicating no data pairs falling into the high-risk zones. Conclusions: These findings show that MARD values approaching accuracies comparable to current commercial alternatives can be obtained from a multiparticipant pilot study with the application of AI. Microwave biosensors and AI models show promise for improving the accuracy and convenience of glucose monitoring systems for people with diabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助hata采纳,获得10
刚刚
顾矜应助lszhw采纳,获得10
1秒前
lqq完成签到 ,获得积分10
1秒前
1秒前
共享精神应助拟拟采纳,获得10
1秒前
1秒前
lhy12345完成签到,获得积分10
1秒前
非常可爱发布了新的文献求助20
2秒前
2秒前
2秒前
2秒前
科研民工发布了新的文献求助10
3秒前
文艺的初蓝完成签到 ,获得积分10
3秒前
TiAmo发布了新的文献求助10
3秒前
刘十三完成签到,获得积分10
3秒前
3秒前
犹豫忆南完成签到,获得积分10
4秒前
科研通AI5应助kingwhitewing采纳,获得10
5秒前
5秒前
mm关注了科研通微信公众号
5秒前
xieyuanxing发布了新的文献求助10
5秒前
5秒前
左然然完成签到,获得积分10
5秒前
5秒前
人福药业完成签到,获得积分10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
细腻晓露发布了新的文献求助10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
6秒前
三里墩头应助科研通管家采纳,获得10
6秒前
天线宝宝应助科研通管家采纳,获得10
6秒前
wing00024完成签到,获得积分10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
6秒前
小马甲应助科研通管家采纳,获得10
7秒前
控制小弟应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
Leif应助科研通管家采纳,获得20
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740