Structural Damage Detection Based on Structural Macro-Strain Mode Shapes Extracted From Non-Stationary Output Responses

拉伤 模式(计算机接口) 结构工程 控制理论(社会学) 计算机科学 材料科学 工程类 人工智能 医学 内科学 控制(管理) 操作系统 程序设计语言
作者
S.H. Chen,Zheng Xiong,Xiongjun Yang,Tao Zheng,Ben Yang,Ying Lei
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096107-096107
标识
DOI:10.1088/1361-6501/ad4c85
摘要

Abstract Long-gauge fiber Bragg grating strain sensors have been widely employed because of their broader measuring range and higher sensitivity. However, current structural damage detection methods using macro-strain modal parameters are based on structural frequency response function or stationary power spectrum density, which are not applicable to non-stationary responses. To overcome this limitation, an improved method is proposed in this paper for structural damage detection based on structural macro-strain responses under unknown multi-point non-stationary excitations. First, a new concept of macro-strain energy spectrum transmissibility (MEST) is proposed using structural non-stationary macro-strain responses, and it is derived that MEST at a certain system pole equals the ratio of macro-strain mode shape. Then, the singular value decomposition technique is adopted for the MEST matrix to identify structural natural frequencies and macro-strain mode shapes. Finally, two damage detection indicators are constructed based on the identified normalized macro-strain mode shape (NMMS). The first indicator is the difference in structural NMMS before and after structural damage. The second one is based on the curvatures of structural NMMS, which can be used for structures without intact baseline. Numerical verifications are conducted to identify beam-type structural damage under multi-point non-stationary excitations or vehicle loads. Five damage scenarios with different measurement noise levels are investigated, and damage detection results validate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cybbbbbb发布了新的文献求助10
刚刚
唐老四发布了新的文献求助30
刚刚
田様应助郑zhenglanyou采纳,获得10
刚刚
桐桐应助五花肉就酒走采纳,获得10
1秒前
华仔应助milewangzi采纳,获得10
2秒前
炙热海云发布了新的文献求助10
3秒前
一拳一个小欧阳完成签到 ,获得积分10
3秒前
靓丽访枫发布了新的文献求助10
3秒前
dsjlove发布了新的文献求助10
3秒前
36456657应助thv_采纳,获得10
5秒前
五花肉就酒走完成签到,获得积分10
5秒前
T9的梦应助orangel采纳,获得10
5秒前
xinlei2023完成签到,获得积分10
6秒前
青柠大大发布了新的文献求助10
7秒前
7秒前
韩寒完成签到 ,获得积分10
7秒前
愉悦完成签到,获得积分10
7秒前
8秒前
背带裤打篮球应助1册采纳,获得30
8秒前
橙汁摇一摇完成签到 ,获得积分10
8秒前
橘生淮南.完成签到,获得积分10
9秒前
花样年华完成签到,获得积分10
11秒前
YJ完成签到,获得积分10
12秒前
Proudmoore完成签到,获得积分10
12秒前
唠叨的傲薇完成签到 ,获得积分10
12秒前
假发君发布了新的文献求助10
14秒前
Betty完成签到,获得积分10
14秒前
1717完成签到 ,获得积分10
14秒前
kingwill应助伟伟采纳,获得10
15秒前
香蕉觅云应助ly采纳,获得10
15秒前
英俊的铭应助朋克采纳,获得10
16秒前
结痂发布了新的文献求助20
16秒前
顾矜应助YJ采纳,获得10
17秒前
douzi完成签到,获得积分10
18秒前
ice7应助曹中明采纳,获得10
18秒前
20秒前
新晋学术小生完成签到 ,获得积分10
20秒前
21秒前
goblin完成签到,获得积分10
23秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3354312
求助须知:如何正确求助?哪些是违规求助? 2978658
关于积分的说明 8686869
捐赠科研通 2660253
什么是DOI,文献DOI怎么找? 1456531
科研通“疑难数据库(出版商)”最低求助积分说明 674387
邀请新用户注册赠送积分活动 665247