环丙沙星
异质结
降级(电信)
电极
电化学
抗生素
光催化
光电子学
分子
分析化学(期刊)
材料科学
化学工程
化学
色谱法
物理化学
有机化学
催化作用
电子工程
生物化学
工程类
作者
Maria H. A. Feitosa,Anderson M. Santos,Ademar Wong,Carlos André Ferreira Moraes,Guilherme M. Grosseli,Otaciro R. Nascimento,Pedro S. Fadini,Fernando C. Moraes
标识
DOI:10.1016/j.cej.2024.152291
摘要
The photoelectrochemical method based on FTO/Fe2O3/BiOI@BiOBr photoanode was applied for the degradation of the ciprofloxacin molecule. The developed method was carried out using a reactor containing ciprofloxacin (3.0 × 10–5 mol L–1), containing a working electrode: FTO/Fe2O3/BiOI@BiOBr, a platinized titanium counter electrode and an Ag/AgCl/KCl (3.0 mol L–1) reference electrode, working potential of 2.0 V with ultraviolet radiation (9.0 W). The electrode was characterized by electrochemical, morphological, structural and optical techniques. When applying the degradation method, after one hour, the antibiotic molecule was degraded more than 90.0 %, being mineralized close to 52.0 %, in which the degraded samples were characterized by UV–vis spectrometry, determination of total organic carbon and UHPLC-Q-ToF-MS. Like this, the oxidation process proved to be efficient yielded a kinetic constant k = 3.7 × 10–2 min−1 and a half-life of 18.7 min. The charge transfer mechanism in the photoanode semiconductor material occurred by a Z-scheme recombination process. Finally, the mass spectroscopy experiments demonstrated that the ciprofloxacin oxidation process led to the formation of fourteen by-products, in which the degradation path was proposed in three steps.
科研通智能强力驱动
Strongly Powered by AbleSci AI