Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution

遥感 分辨率(逻辑) 图像(数学) 计算机科学 计算机视觉 地理 人工智能
作者
Yi Xiao,Qiangqiang Yuan,Kui Jiang,Yuzeng Chen,Qiang Zhang,Chia‐Wen Lin
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2405.04964
摘要

Recent progress in remote sensing image (RSI) super-resolution (SR) has exhibited remarkable performance using deep neural networks, e.g., Convolutional Neural Networks and Transformers. However, existing SR methods often suffer from either a limited receptive field or quadratic computational overhead, resulting in sub-optimal global representation and unacceptable computational costs in large-scale RSI. To alleviate these issues, we develop the first attempt to integrate the Vision State Space Model (Mamba) for RSI-SR, which specializes in processing large-scale RSI by capturing long-range dependency with linear complexity. To achieve better SR reconstruction, building upon Mamba, we devise a Frequency-assisted Mamba framework, dubbed FMSR, to explore the spatial and frequent correlations. In particular, our FMSR features a multi-level fusion architecture equipped with the Frequency Selection Module (FSM), Vision State Space Module (VSSM), and Hybrid Gate Module (HGM) to grasp their merits for effective spatial-frequency fusion. Recognizing that global and local dependencies are complementary and both beneficial for SR, we further recalibrate these multi-level features for accurate feature fusion via learnable scaling adaptors. Extensive experiments on AID, DOTA, and DIOR benchmarks demonstrate that our FMSR outperforms state-of-the-art Transformer-based methods HAT-L in terms of PSNR by 0.11 dB on average, while consuming only 28.05% and 19.08% of its memory consumption and complexity, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wu发布了新的文献求助10
1秒前
1秒前
崔先生发布了新的文献求助10
2秒前
研友_38KgB8发布了新的文献求助10
4秒前
星禾吾发布了新的文献求助10
5秒前
6秒前
7秒前
传奇3应助wu采纳,获得10
9秒前
xiong_mandy完成签到 ,获得积分10
9秒前
科研通AI2S应助彼得大帝采纳,获得10
9秒前
9秒前
Leisure_Lee完成签到,获得积分10
13秒前
MM发布了新的文献求助20
13秒前
阳阳阳发布了新的文献求助10
14秒前
难过的飞雪完成签到,获得积分10
14秒前
道明嗣发布了新的文献求助10
15秒前
whuhustwit发布了新的文献求助10
15秒前
天天快乐应助豆沙包采纳,获得10
18秒前
自然的绿兰应助陈伟杰采纳,获得10
19秒前
Zoey完成签到,获得积分10
20秒前
十二十三发布了新的文献求助10
21秒前
研友_38KgB8完成签到,获得积分10
22秒前
22秒前
24秒前
SinaiPen发布了新的文献求助10
27秒前
27秒前
立华奏完成签到,获得积分10
30秒前
October发布了新的文献求助10
30秒前
30秒前
32秒前
33秒前
yiyi1s发布了新的文献求助10
36秒前
星辰大海应助斑比采纳,获得10
37秒前
38秒前
可爱的函函应助October采纳,获得10
38秒前
呆瓜发布了新的文献求助10
38秒前
情怀应助zjuroc采纳,获得10
42秒前
42秒前
44秒前
anna1992发布了新的文献求助10
44秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351035
求助须知:如何正确求助?哪些是违规求助? 2976553
关于积分的说明 8675562
捐赠科研通 2657690
什么是DOI,文献DOI怎么找? 1455214
科研通“疑难数据库(出版商)”最低求助积分说明 673751
邀请新用户注册赠送积分活动 664242