Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution

遥感 分辨率(逻辑) 图像(数学) 计算机科学 计算机视觉 地理 人工智能
作者
Yi Xiao,Qiangqiang Yuan,Kui Jiang,Yuzeng Chen,Qiang Zhang,Chia‐Wen Lin
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2405.04964
摘要

Recent progress in remote sensing image (RSI) super-resolution (SR) has exhibited remarkable performance using deep neural networks, e.g., Convolutional Neural Networks and Transformers. However, existing SR methods often suffer from either a limited receptive field or quadratic computational overhead, resulting in sub-optimal global representation and unacceptable computational costs in large-scale RSI. To alleviate these issues, we develop the first attempt to integrate the Vision State Space Model (Mamba) for RSI-SR, which specializes in processing large-scale RSI by capturing long-range dependency with linear complexity. To achieve better SR reconstruction, building upon Mamba, we devise a Frequency-assisted Mamba framework, dubbed FMSR, to explore the spatial and frequent correlations. In particular, our FMSR features a multi-level fusion architecture equipped with the Frequency Selection Module (FSM), Vision State Space Module (VSSM), and Hybrid Gate Module (HGM) to grasp their merits for effective spatial-frequency fusion. Recognizing that global and local dependencies are complementary and both beneficial for SR, we further recalibrate these multi-level features for accurate feature fusion via learnable scaling adaptors. Extensive experiments on AID, DOTA, and DIOR benchmarks demonstrate that our FMSR outperforms state-of-the-art Transformer-based methods HAT-L in terms of PSNR by 0.11 dB on average, while consuming only 28.05% and 19.08% of its memory consumption and complexity, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助MAFAKETHS采纳,获得10
1秒前
轻松听寒完成签到,获得积分10
1秒前
3秒前
4秒前
4秒前
pick_up发布了新的文献求助10
4秒前
HHHH完成签到,获得积分10
4秒前
寻道图强举报昂啵啵求助涉嫌违规
5秒前
5秒前
5秒前
funnyzpc完成签到,获得积分10
5秒前
5秒前
5秒前
研友_VZG7GZ应助体贴菠萝采纳,获得10
6秒前
英俊的铭应助渔泽采纳,获得10
6秒前
6秒前
Ava应助Jasoncheng采纳,获得10
6秒前
合适忆枫完成签到 ,获得积分10
7秒前
我想当太空人完成签到,获得积分10
8秒前
8秒前
TYG发布了新的文献求助10
10秒前
10秒前
y943发布了新的文献求助10
11秒前
寒冷又菡发布了新的文献求助10
11秒前
jay发布了新的文献求助10
12秒前
13秒前
科研通AI6应助阿伟喵喵喵采纳,获得10
13秒前
wanci应助迫切采纳,获得10
14秒前
17秒前
yezi完成签到,获得积分10
17秒前
qjq琪发布了新的文献求助10
18秒前
渔泽完成签到,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
炖蛋完成签到,获得积分10
20秒前
21秒前
21秒前
冷静夜蕾完成签到,获得积分10
22秒前
风语过完成签到,获得积分10
22秒前
吴未发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851