This study introduces a new method for precise acoustic drone localization and tracking via the noise generated by the drone. Drone noises include harmonic frequency components which are related to the rotational speed of the propeller and the number of blades. This study integrates utilization of the frequency components around harmonics into Steered Response Power - Phase Transform (SRP-PHAT). First, a custom discrete Fourier transform (namely DFT-Harmonics) is defined which concentrates only on the vicinities of harmonics to capture the frequency components possibly related to the drone sound. Then, DFT-Harmonics is integrated into SRP-PHAT, which is named SRP-Harmonics. The benefits of SRP-Harmonics are explained and illustrated via SRP maps and videos. Experiments with real microphone array data show that SRP-Harmonics is precise in localizing and tracking a drone, while the ordinary SRP-PHAT can not be reasonably successful. Moreover, SRP-Harmonics after Kaiser window can maintain its performance even when significant level of artificial white noise or natural wind noise exists in the data.