Cooperative ISAC With Direct Localization and Rate-Splitting Multiple Access Communication: A Pareto Optimization Framework

计算机科学 帕累托原理 最优化问题 分布式计算 通信系统 数学优化 基站 传输(电信) 计算机网络 算法 电信 数学
作者
Peng Gao,Lixiang Lian,Jinpei Yu
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (5): 1496-1515 被引量:23
标识
DOI:10.1109/jsac.2023.3240714
摘要

Integrated sensing and communication (ISAC) has been a promising technology in beyond 5G and 6G network to simultaneously support high-speed information transfer and high-quality environmental perception. Cloud radio access networks (C-RAN) enables the cooperation among multiple base stations (BSs) to provide additional cooperation gains for both communication and sensing functionalities. In this paper, we investigate the cooperative ISAC (CoISAC) system with rate-splitting multiple access (RSMA) transmission scheme for advanced interference management and direct localization sensing scheme to provide high-accuracy positioning services. Specifically, we adopt Pareto optimization framework to characterize the achievable performance region of the CoISAC system built on the sum rate of multiple communication users and the positioning error bound of radar target. Then, we formulate communication-centric and radar-centric optimization problems in the CoISAC system to systematically search for the optimal Pareto boundary of the achievable performance region. Two iterative algorithms based on successive convex approximation (SCA) are proposed to effectively solve these two optimization problems, respectively, therefore near-optimal Pareto boundary can be found. Numerical results show that the RSMA-assisted CoISAC system achieves the best trade-off performance among various baselines. The cooperative scheme can fully unveil the potential of RSMA in the ISAC system by providing more freedom for rate-splitting policy design under limited resources. Therefore, incorporating RSMA in the CoISAC system can significantly boost the overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南宫冰夏发布了新的文献求助10
1秒前
1秒前
kai发布了新的文献求助10
1秒前
青堤应助一方通行采纳,获得10
1秒前
Judy完成签到 ,获得积分0
2秒前
wndmy发布了新的文献求助10
2秒前
李rh发布了新的文献求助10
2秒前
元宝完成签到,获得积分10
2秒前
2秒前
顾矜应助You采纳,获得10
3秒前
陈多多在努力完成签到,获得积分20
3秒前
chiech完成签到,获得积分10
3秒前
正直的香薇完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
手心完成签到,获得积分10
4秒前
Owen应助yejian采纳,获得10
4秒前
digger2023发布了新的文献求助10
4秒前
yao发布了新的文献求助10
6秒前
三幅画发布了新的文献求助10
6秒前
血小板发布了新的文献求助10
6秒前
7秒前
共享精神应助DMA50采纳,获得10
7秒前
爆米花应助Beyond095采纳,获得10
7秒前
FashionBoy应助懦弱的如萱采纳,获得10
7秒前
zhangni发布了新的文献求助10
8秒前
共享精神应助ChiDaiOLD采纳,获得10
8秒前
肖远发布了新的文献求助10
8秒前
木鱼发布了新的文献求助10
8秒前
zhliu完成签到,获得积分20
9秒前
hani完成签到,获得积分10
10秒前
青堤应助Jennifer采纳,获得10
11秒前
快乐蜗牛完成签到,获得积分10
11秒前
酷波er应助pyt采纳,获得30
11秒前
852应助拼搏的松鼠采纳,获得10
12秒前
兴奋恶天发布了新的文献求助30
12秒前
12秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475079
求助须知:如何正确求助?哪些是违规求助? 3067046
关于积分的说明 9102348
捐赠科研通 2758386
什么是DOI,文献DOI怎么找? 1513636
邀请新用户注册赠送积分活动 699739
科研通“疑难数据库(出版商)”最低求助积分说明 699119