Using Machine Learning Methods to Assess Lymphovascular Invasion and Survival in Breast Cancer: Performance of Combining Preoperative Clinical and MRI Characteristics

医学 乳房磁振造影 接收机工作特性 淋巴血管侵犯 乳腺癌 磁共振成像 放射科 比例危险模型 T级 阶段(地层学) 列线图 癌症 内科学 乳腺摄影术 转移 古生物学 生物
作者
Zeyan Xu,Yu Xie,Lei Wu,Minglei Chen,Zhenwei Shi,Yanfen Cui,Chu Han,Huan Lin,Yu Liu,Pinxiong Li,Xin Chen,Yingying Ding,Zaiyi Liu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1580-1589 被引量:4
标识
DOI:10.1002/jmri.28647
摘要

Preoperative assessment of lymphovascular invasion (LVI) in invasive breast cancer (IBC) is of high clinical relevance for treatment decision-making and prognosis.To investigate the associations of preoperative clinical and magnetic resonance imaging (MRI) characteristics with LVI and disease-free survival (DFS) by using machine learning methods in patients with IBC.Retrospective.Five hundred and seventy-five women (range: 24-79 years) with IBC who underwent preoperative MRI examinations at two hospitals, divided into the training (N = 386) and validation datasets (N = 189).Axial fat-suppressed T2-weighted turbo spin-echo sequence and dynamic contrast-enhanced with fat-suppressed T1-weighted three-dimensional gradient echo imaging.MRI characteristics (clinical T stage, breast edema score, MRI axillary lymph node status, multicentricity or multifocality, enhancement pattern, adjacent vessel sign, and increased ipsilateral vascularity) were reviewed independently by three radiologists. Logistic regression (LR), eXtreme Gradient Boosting (XGBoost), k-Nearest Neighbor (KNN), and Support Vector Machine (SVM) algorithms were used to establish the models by combing preoperative clinical and MRI characteristics for assessing LVI status in the training dataset, and the methods were further applied in the validation dataset. The LVI score was calculated using the best-performing of the four models to analyze the association with DFS.Chi-squared tests, variance inflation factors, receiver operating characteristics (ROC), Kaplan-Meier curve, log-rank, Cox regression, and intraclass correlation coefficient were performed. The area under the ROC curve (AUC) and hazard ratios (HR) were calculated. A P-value <0.05 was considered statistically significant.The model established by the XGBoost algorithm had better performance than LR, SVM, and KNN models, achieving an AUC of 0.832 (95% confidence interval [CI]: 0.789, 0.876) in the training dataset and 0.838 (95% CI: 0.775, 0.901) in the validation dataset. The LVI score established by the XGBoost model was an independent indicator of DFS (adjusted HR: 2.66, 95% CI: 1.22-5.80).The XGBoost model based on preoperative clinical and MRI characteristics may help to investigate the LVI status and survival in patients with IBC.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
菠萝派发布了新的文献求助10
4秒前
4秒前
yuanling完成签到 ,获得积分10
5秒前
5秒前
7秒前
wanmiao12完成签到,获得积分10
7秒前
IceT发布了新的文献求助10
8秒前
sxhlrm完成签到,获得积分10
10秒前
10秒前
佳佳应助Alioth采纳,获得10
11秒前
研友_VZG7GZ应助如约而至采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
袁科研完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
刚好夏天完成签到 ,获得积分10
18秒前
cxyyy完成签到,获得积分10
19秒前
追寻荔枝发布了新的文献求助10
21秒前
傅扬发布了新的文献求助10
21秒前
21秒前
22秒前
谦让鹏涛完成签到,获得积分20
22秒前
zzz完成签到,获得积分10
23秒前
xyx945完成签到,获得积分10
23秒前
23秒前
亚婷儿完成签到,获得积分10
24秒前
仁爱的夜南完成签到,获得积分10
24秒前
25秒前
欢喜若雁发布了新的文献求助10
27秒前
916应助lin采纳,获得10
27秒前
1936668426完成签到,获得积分10
28秒前
MISSIW发布了新的文献求助10
28秒前
30秒前
cr7发布了新的文献求助10
30秒前
beimi发布了新的文献求助10
30秒前
英俊的铭应助追寻荔枝采纳,获得10
31秒前
鱿鱼完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011