已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using Machine Learning Methods to Assess Lymphovascular Invasion and Survival in Breast Cancer: Performance of Combining Preoperative Clinical and MRI Characteristics

医学 乳房磁振造影 接收机工作特性 淋巴血管侵犯 乳腺癌 磁共振成像 放射科 比例危险模型 T级 阶段(地层学) 列线图 癌症 内科学 乳腺摄影术 转移 古生物学 生物
作者
Zeyan Xu,Yu Xie,Lei Wu,Minglei Chen,Zhenwei Shi,Yanfen Cui,Chu Han,Huan Lin,Yu Liu,Pinxiong Li,Xin Chen,Yingying Ding,Zaiyi Liu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1580-1589 被引量:4
标识
DOI:10.1002/jmri.28647
摘要

Preoperative assessment of lymphovascular invasion (LVI) in invasive breast cancer (IBC) is of high clinical relevance for treatment decision-making and prognosis.To investigate the associations of preoperative clinical and magnetic resonance imaging (MRI) characteristics with LVI and disease-free survival (DFS) by using machine learning methods in patients with IBC.Retrospective.Five hundred and seventy-five women (range: 24-79 years) with IBC who underwent preoperative MRI examinations at two hospitals, divided into the training (N = 386) and validation datasets (N = 189).Axial fat-suppressed T2-weighted turbo spin-echo sequence and dynamic contrast-enhanced with fat-suppressed T1-weighted three-dimensional gradient echo imaging.MRI characteristics (clinical T stage, breast edema score, MRI axillary lymph node status, multicentricity or multifocality, enhancement pattern, adjacent vessel sign, and increased ipsilateral vascularity) were reviewed independently by three radiologists. Logistic regression (LR), eXtreme Gradient Boosting (XGBoost), k-Nearest Neighbor (KNN), and Support Vector Machine (SVM) algorithms were used to establish the models by combing preoperative clinical and MRI characteristics for assessing LVI status in the training dataset, and the methods were further applied in the validation dataset. The LVI score was calculated using the best-performing of the four models to analyze the association with DFS.Chi-squared tests, variance inflation factors, receiver operating characteristics (ROC), Kaplan-Meier curve, log-rank, Cox regression, and intraclass correlation coefficient were performed. The area under the ROC curve (AUC) and hazard ratios (HR) were calculated. A P-value <0.05 was considered statistically significant.The model established by the XGBoost algorithm had better performance than LR, SVM, and KNN models, achieving an AUC of 0.832 (95% confidence interval [CI]: 0.789, 0.876) in the training dataset and 0.838 (95% CI: 0.775, 0.901) in the validation dataset. The LVI score established by the XGBoost model was an independent indicator of DFS (adjusted HR: 2.66, 95% CI: 1.22-5.80).The XGBoost model based on preoperative clinical and MRI characteristics may help to investigate the LVI status and survival in patients with IBC.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助22222采纳,获得30
2秒前
甜甜甜完成签到 ,获得积分10
3秒前
4秒前
7秒前
迷路的沛芹完成签到 ,获得积分10
9秒前
jjj完成签到,获得积分10
10秒前
terence发布了新的文献求助10
10秒前
酷波er应助Aprilapple采纳,获得10
10秒前
11秒前
sunny完成签到 ,获得积分10
12秒前
过分动真完成签到 ,获得积分10
12秒前
14秒前
子辰发布了新的文献求助10
15秒前
新陈完成签到 ,获得积分10
15秒前
韩保晨完成签到 ,获得积分10
15秒前
CodeCraft应助ranj采纳,获得10
17秒前
寻道图强完成签到,获得积分0
17秒前
活力的小猫咪完成签到 ,获得积分10
19秒前
22222发布了新的文献求助30
19秒前
Meyako完成签到 ,获得积分10
21秒前
feihu完成签到,获得积分10
22秒前
22秒前
KongHN完成签到,获得积分10
23秒前
Eatanicecube完成签到,获得积分10
25秒前
Fiona完成签到 ,获得积分10
26秒前
子辰完成签到,获得积分10
31秒前
ranj完成签到,获得积分10
31秒前
香蕉猴子啦啦啦完成签到,获得积分10
32秒前
32秒前
cCc发布了新的文献求助10
36秒前
我刚上小学完成签到,获得积分10
36秒前
逐梦完成签到,获得积分20
36秒前
39秒前
40秒前
41秒前
书文混四方完成签到 ,获得积分10
42秒前
45秒前
begonia2021发布了新的文献求助10
46秒前
包容新蕾完成签到 ,获得积分10
49秒前
50秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171355
求助须知:如何正确求助?哪些是违规求助? 2822342
关于积分的说明 7938795
捐赠科研通 2482815
什么是DOI,文献DOI怎么找? 1322807
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627