Hollow bi-Janus hetero-nanofibers as a bi-functional photoreforming catalyst for prominently boosting hydrogen evolution from water-pollutant system

杰纳斯 材料科学 催化作用 纳米纤维 光催化 分解水 静电纺丝 纳米技术 化学工程 光电子学 有机化学 聚合物 复合材料 工程类 化学
作者
Jie Liu,Xinghua Li,Mingzhuang Liu,Xiaowei Li,Chaohan Han,Luyao Niu,Fang Zhang,Xi Wu,Jianmin Sun,Changlu Shao,Yichun Liu
出处
期刊:Nano Energy [Elsevier]
卷期号:108: 108226-108226 被引量:14
标识
DOI:10.1016/j.nanoen.2023.108226
摘要

Bi-functional photoreforming catalysts are promising for synergetic hydrogen evolution and pollutant removal through a water-pollutant system. The rational energy band and interface engineering are crucial in promoting their performance but are still challenging due to finely regulating nanoscale interface difficulties. Herein, single to bi-Janus interface engineering is adopted to develop hollow bi-Janus SrTiO3/ZnO/TiO2 hetero-nanofibers with gradient energy band and spatially separated redox surfaces via electrospinning married atomic layer deposition methods. The simulations indicate that these novel structures have a stronger internal electric field (5.72 ×106 V/m) than SrTiO3/ZnO (1.84 ×106 V/m) and ZnO/TiO2 (3.98 ×106 V/m) single-Janus hetero-nanofibers (SJ-HNFs), and more ordered electric field distribution than mixed hetero-nanofibers (MHNFs). Experimentally, they have better charge separation and directional carriers transfer path, as evidenced by photoluminescence, photovoltage, and photoelectrochemical investigations, along with photo-deposition probe experiments. The gradient energy band, directional charge transfer path, and spatially separated redox surfaces promote their photoreforming performance effectively, presenting a high photoreforming hydrogen evolution rate of 104.6 μmol g−1 h−1 in 10,000 ppm propranolol (corresponding degradation of 33.1% after 5 h), about 3.62, 4.27, and 3.11 times of ZnO/TiO2 SJ-HNFs, SrTiO3/ZnO SJ-HNFs and SrTiO3/ZnO/TiO2 MHNFs. This work provides a promising interfacial engineering strategy for designing photoreforming catalyst to simultaneously achieve energy conversion and environmental pollution treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
h1909完成签到,获得积分10
刚刚
左丘尔阳完成签到,获得积分10
刚刚
叁拾肆完成签到,获得积分10
刚刚
1秒前
科研菜狗发布了新的文献求助10
1秒前
负责的母鸡完成签到,获得积分10
1秒前
1秒前
Faceman完成签到,获得积分20
2秒前
cc2064完成签到,获得积分10
2秒前
科研的人完成签到 ,获得积分10
3秒前
寒冷南晴完成签到,获得积分10
3秒前
ceeray23发布了新的文献求助20
3秒前
3秒前
左丘尔阳发布了新的文献求助10
4秒前
闪闪凝梦发布了新的文献求助10
4秒前
黄大仙完成签到,获得积分10
4秒前
浮游应助daxiangjiao采纳,获得10
4秒前
小青椒完成签到,获得积分0
4秒前
喜悦香薇完成签到 ,获得积分10
4秒前
wanci应助吕易巧采纳,获得10
5秒前
5秒前
qiqibaby发布了新的文献求助10
5秒前
6秒前
时冬冬完成签到,获得积分0
6秒前
罗克完成签到,获得积分10
6秒前
冷酷严青发布了新的文献求助10
6秒前
xiaoxiao完成签到,获得积分10
6秒前
zgrmws应助东风采纳,获得10
7秒前
华仔应助1renebaebae采纳,获得10
7秒前
7秒前
Hqing完成签到 ,获得积分10
7秒前
孙pc完成签到,获得积分10
7秒前
even完成签到,获得积分10
7秒前
calm完成签到,获得积分10
8秒前
Shuan发布了新的文献求助10
8秒前
小蘑菇应助达不溜采纳,获得10
8秒前
8秒前
9秒前
打打应助糊涂的滑板采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997