Hollow bi-Janus hetero-nanofibers as a bi-functional photoreforming catalyst for prominently boosting hydrogen evolution from water-pollutant system

杰纳斯 材料科学 催化作用 纳米纤维 光催化 分解水 静电纺丝 纳米技术 表面光电压 化学工程 光电子学 有机化学 聚合物 复合材料 工程类 化学 量子力学 物理 光谱学
作者
Jie Liu,Xinghua Li,Mingzhuang Liu,Xiaowei Li,Chaohan Han,Luyao Niu,Fang Zhang,Xi Wu,Jianmin Sun,Changlu Shao,Yichun Liu
出处
期刊:Nano Energy [Elsevier]
卷期号:108: 108226-108226 被引量:6
标识
DOI:10.1016/j.nanoen.2023.108226
摘要

Bi-functional photoreforming catalysts are promising for synergetic hydrogen evolution and pollutant removal through a water-pollutant system. The rational energy band and interface engineering are crucial in promoting their performance but are still challenging due to finely regulating nanoscale interface difficulties. Herein, single to bi-Janus interface engineering is adopted to develop hollow bi-Janus SrTiO3/ZnO/TiO2 hetero-nanofibers with gradient energy band and spatially separated redox surfaces via electrospinning married atomic layer deposition methods. The simulations indicate that these novel structures have a stronger internal electric field (5.72 ×106 V/m) than SrTiO3/ZnO (1.84 ×106 V/m) and ZnO/TiO2 (3.98 ×106 V/m) single-Janus hetero-nanofibers (SJ-HNFs), and more ordered electric field distribution than mixed hetero-nanofibers (MHNFs). Experimentally, they have better charge separation and directional carriers transfer path, as evidenced by photoluminescence, photovoltage, and photoelectrochemical investigations, along with photo-deposition probe experiments. The gradient energy band, directional charge transfer path, and spatially separated redox surfaces promote their photoreforming performance effectively, presenting a high photoreforming hydrogen evolution rate of 104.6 μmol g−1 h−1 in 10,000 ppm propranolol (corresponding degradation of 33.1% after 5 h), about 3.62, 4.27, and 3.11 times of ZnO/TiO2 SJ-HNFs, SrTiO3/ZnO SJ-HNFs and SrTiO3/ZnO/TiO2 MHNFs. This work provides a promising interfacial engineering strategy for designing photoreforming catalyst to simultaneously achieve energy conversion and environmental pollution treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣的映寒完成签到 ,获得积分10
4秒前
ChatGPT发布了新的文献求助10
12秒前
白菜完成签到 ,获得积分10
15秒前
金金完成签到 ,获得积分10
19秒前
菠萝完成签到 ,获得积分10
20秒前
mumuyayaguoguo完成签到 ,获得积分10
23秒前
争气完成签到 ,获得积分10
24秒前
欣喜的薯片完成签到 ,获得积分10
25秒前
bookgg完成签到 ,获得积分10
28秒前
上官若男应助LouieHuang采纳,获得10
36秒前
Zheng完成签到 ,获得积分10
36秒前
37秒前
默默的乘风完成签到 ,获得积分10
39秒前
菠萝完成签到 ,获得积分10
45秒前
小李完成签到 ,获得积分10
49秒前
CHEN完成签到 ,获得积分10
49秒前
美好灵寒完成签到 ,获得积分10
54秒前
整齐的大开完成签到 ,获得积分10
59秒前
8D完成签到,获得积分10
1分钟前
自然丹云完成签到 ,获得积分10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
even完成签到 ,获得积分10
1分钟前
月儿完成签到 ,获得积分10
1分钟前
机灵的芷波完成签到 ,获得积分10
1分钟前
酸辣完成签到 ,获得积分10
1分钟前
水星完成签到 ,获得积分10
1分钟前
张楠完成签到 ,获得积分10
1分钟前
Poker完成签到 ,获得积分10
1分钟前
Tina完成签到 ,获得积分10
1分钟前
窦慕卉完成签到,获得积分10
1分钟前
fiu~完成签到 ,获得积分10
1分钟前
兔兔完成签到 ,获得积分10
1分钟前
蟹xie完成签到 ,获得积分10
1分钟前
科研通AI2S应助JaneChen采纳,获得10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
llhh2024完成签到,获得积分10
1分钟前
ovood完成签到 ,获得积分10
1分钟前
long0809完成签到,获得积分10
1分钟前
快递乱跑完成签到 ,获得积分10
2分钟前
ChatGPT完成签到,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768880
捐赠科研通 2440255
什么是DOI,文献DOI怎么找? 1297353
科研通“疑难数据库(出版商)”最低求助积分说明 624928
版权声明 600792