Hollow bi-Janus hetero-nanofibers as a bi-functional photoreforming catalyst for prominently boosting hydrogen evolution from water-pollutant system

杰纳斯 材料科学 催化作用 纳米纤维 光催化 分解水 静电纺丝 纳米技术 化学工程 光电子学 有机化学 聚合物 复合材料 工程类 化学
作者
Jie Liu,Xinghua Li,Mingzhuang Liu,Xiaowei Li,Chaohan Han,Luyao Niu,Fang Zhang,Xi Wu,Jianmin Sun,Changlu Shao,Yichun Liu
出处
期刊:Nano Energy [Elsevier]
卷期号:108: 108226-108226 被引量:14
标识
DOI:10.1016/j.nanoen.2023.108226
摘要

Bi-functional photoreforming catalysts are promising for synergetic hydrogen evolution and pollutant removal through a water-pollutant system. The rational energy band and interface engineering are crucial in promoting their performance but are still challenging due to finely regulating nanoscale interface difficulties. Herein, single to bi-Janus interface engineering is adopted to develop hollow bi-Janus SrTiO3/ZnO/TiO2 hetero-nanofibers with gradient energy band and spatially separated redox surfaces via electrospinning married atomic layer deposition methods. The simulations indicate that these novel structures have a stronger internal electric field (5.72 ×106 V/m) than SrTiO3/ZnO (1.84 ×106 V/m) and ZnO/TiO2 (3.98 ×106 V/m) single-Janus hetero-nanofibers (SJ-HNFs), and more ordered electric field distribution than mixed hetero-nanofibers (MHNFs). Experimentally, they have better charge separation and directional carriers transfer path, as evidenced by photoluminescence, photovoltage, and photoelectrochemical investigations, along with photo-deposition probe experiments. The gradient energy band, directional charge transfer path, and spatially separated redox surfaces promote their photoreforming performance effectively, presenting a high photoreforming hydrogen evolution rate of 104.6 μmol g−1 h−1 in 10,000 ppm propranolol (corresponding degradation of 33.1% after 5 h), about 3.62, 4.27, and 3.11 times of ZnO/TiO2 SJ-HNFs, SrTiO3/ZnO SJ-HNFs and SrTiO3/ZnO/TiO2 MHNFs. This work provides a promising interfacial engineering strategy for designing photoreforming catalyst to simultaneously achieve energy conversion and environmental pollution treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助Nomb1采纳,获得10
2秒前
万能图书馆应助九儿采纳,获得10
2秒前
3秒前
左丘秋尽完成签到,获得积分10
4秒前
__发布了新的文献求助10
4秒前
小白发布了新的文献求助10
5秒前
子车茗应助科研菜鸟采纳,获得10
5秒前
7秒前
Lucas应助陈晨采纳,获得10
8秒前
董小白发布了新的文献求助10
9秒前
rrraymond完成签到,获得积分10
10秒前
Thi发布了新的文献求助10
10秒前
苗元槐完成签到 ,获得积分10
10秒前
小北发布了新的文献求助10
11秒前
沉默的玩偶完成签到,获得积分10
12秒前
14秒前
16秒前
19秒前
向暖发布了新的文献求助10
19秒前
20秒前
苏苏苏发布了新的文献求助10
20秒前
昏睡的妙梦完成签到,获得积分10
21秒前
等乙天发布了新的文献求助10
21秒前
Seven完成签到,获得积分10
21秒前
22秒前
万能图书馆应助WTQ采纳,获得10
23秒前
cervantes发布了新的文献求助10
23秒前
yiersan发布了新的文献求助10
25秒前
科研菜鸟完成签到,获得积分10
25秒前
打打应助karstbing采纳,获得30
26秒前
斯文败类应助度ewf采纳,获得10
28秒前
水滴发布了新的文献求助20
28秒前
陈晨发布了新的文献求助10
29秒前
30秒前
31秒前
科研通AI6应助Liu采纳,获得10
35秒前
小马发布了新的文献求助10
37秒前
爱吃无核瓜子完成签到,获得积分10
38秒前
万能图书馆应助冒如怿采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563404
求助须知:如何正确求助?哪些是违规求助? 4648237
关于积分的说明 14684240
捐赠科研通 4590274
什么是DOI,文献DOI怎么找? 2518398
邀请新用户注册赠送积分活动 1491088
关于科研通互助平台的介绍 1462369