Attention-guided siamese networks for change detection in high resolution remote sensing images

遥感 变更检测 卷积神经网络 人工智能 特征(语言学) 地理 深度学习 地图学 GSM演进的增强数据速率 比例(比率) 噪音(视频) 语义学(计算机科学) 模式识别(心理学) 图层(电子) 特征提取 计算机科学 图像(数学) 有机化学 化学 程序设计语言 哲学 语言学
作者
Hongyang Yin,Liguo Weng,Yan Li,Min Xia,Kai Hu,Haifeng Lin,Qian Ming
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:117: 103206-103206
标识
DOI:10.1016/j.jag.2023.103206
摘要

Understanding surface changes requires the ability to identify changes in high resolution remote sensing images. Because current deep learning-based change detection algorithms are not able to accurately discriminate between altered and unmodified areas, which leads to the problem of edge uncertainty and small target missing in the detection process. To identify changes in high resolution remote sensing images, this research proposes an unique Attention-Guided Siamese Network (SAGNet). In this network, bitemporal images’ highly representative deep semantic features are retrieved using a fully convolutional dual-stream architecture, and the extracted deep semantic features are then used to extract semantic variation data from the Global Semantic Aggregation Module (GSAM). In the feature decoding stage, the extracted features are refined layer by layer through the Attention Fusion Module (AFM) for change map reconstruction. In addition, we propose two other auxiliary modules: Cross-scale Fusion Module (CFM) and Bilateral Feature Fusion Module (BFFM), which enable the network to remove background noise while improving the recognition accuracy of changing object boundaries and small-changing targets in the output change map. A public dataset called LEVIR-CD and a challenging dataset called BICD made up of bitemporal images from Google Earth covering various parts of China are used to experimentally test SAGNet. Finally, experimental evidence shows that our approach outperforms current cutting-edge change detection techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxq发布了新的文献求助10
1秒前
CipherSage应助刻苦的涛采纳,获得10
2秒前
2秒前
3秒前
6秒前
Ava应助个性的汲采纳,获得10
8秒前
8秒前
张冰驰完成签到,获得积分10
9秒前
星辰大海应助任全强采纳,获得10
9秒前
10秒前
半城微凉发布了新的文献求助20
12秒前
自闭的研究生完成签到,获得积分10
16秒前
19秒前
英姑应助XHH1994采纳,获得10
20秒前
S8完成签到,获得积分20
21秒前
22秒前
22秒前
lxy发布了新的文献求助10
23秒前
annali发布了新的文献求助10
23秒前
hana完成签到 ,获得积分10
23秒前
123完成签到,获得积分20
24秒前
25秒前
25秒前
yznfly应助井野浮采纳,获得40
26秒前
123发布了新的文献求助10
26秒前
MYY完成签到,获得积分10
27秒前
Timing侠发布了新的文献求助10
27秒前
张冰驰关注了科研通微信公众号
28秒前
dypdyp应助S8采纳,获得10
30秒前
不安豁完成签到,获得积分10
30秒前
30秒前
Owen应助xiangeyedu采纳,获得10
33秒前
蓝天白云发布了新的文献求助30
34秒前
35秒前
36秒前
无情莆完成签到 ,获得积分10
37秒前
37秒前
Owen应助jintt采纳,获得10
38秒前
lxy完成签到,获得积分10
38秒前
二光头完成签到 ,获得积分10
38秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382