Machine-Learning Model for Prediction of Cefepime Susceptibility in Escherichia coli from Whole-Genome Sequencing Data

头孢吡肟 肉汤微量稀释 生物 大肠杆菌 全基因组测序 临床微生物学 微生物学 抗菌剂 基因组 最小抑制浓度 计算生物学 遗传学 细菌 头孢他啶 基因 铜绿假单胞菌
作者
Romney M. Humphries,Eugene Bragin,Julian Parkhill,Grace Morales,Jonathan E. Schmitz,Paul A. Rhodes
出处
期刊:Journal of Clinical Microbiology [American Society for Microbiology]
卷期号:61 (3)
标识
DOI:10.1128/jcm.01431-22
摘要

The declining cost of performing bacterial whole-genome sequencing (WGS) coupled with the availability of large libraries of sequence data for well-characterized isolates have enabled the application of machine-learning (ML) methods to the development of nonlinear sequence-based predictive models. We tested the ML-based model developed by Next Gen Diagnostics for prediction of cefepime phenotypic susceptibility results in Escherichia coli. A cohort of 100 isolates of E. coli recovered from urine (n = 77) and blood (n = 23) cultures were used. The cefepime MIC was determined in triplicate by reference broth microdilution and classified as susceptible (MIC of ≤2 μg/mL) or not susceptible (MIC of ≥4 μg/mL) using the 2022 Clinical and Laboratory Standards Institute breakpoints. Five isolates generated both susceptible and not susceptible MIC results, yielding categorical agreement of 95% for the reference method to itself. Categorical agreement of ML to MIC interpretations was 97%, with 2 very major (false, susceptible) and 1 major (false, not susceptible) errors. One very major error occurred for an isolate with blaCTX-M-27 (MIC mode, ≥32 μg/mL) and one for an isolate with blaTEM-34 for which the MIC cefepime mode was 4 μg/mL. One major error was for an isolate with blaCTX-M-27 but with a MIC mode of 2 μg/mL. These preliminary data demonstrated performance of ML for a clinically important antimicrobial-species pair at a caliber similar to phenotypic methods, encouraging wider development of sequence-based susceptibility prediction and its validation and use in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒食应助聪慧的迎夏采纳,获得80
刚刚
粘粘完成签到,获得积分10
5秒前
劲秉应助Long采纳,获得10
8秒前
14秒前
江川发布了新的文献求助10
15秒前
15秒前
16秒前
NINI完成签到 ,获得积分10
16秒前
所所应助张政采纳,获得10
17秒前
munis发布了新的文献求助10
18秒前
RmX完成签到,获得积分10
19秒前
20秒前
司空豁举报研友_nEjYyZ求助涉嫌违规
20秒前
洛神静伊发布了新的文献求助10
20秒前
holy完成签到,获得积分10
22秒前
7777777发布了新的文献求助10
25秒前
科研通AI2S应助合适的落落采纳,获得10
25秒前
27秒前
dingning应助不想学习采纳,获得10
27秒前
28秒前
lj完成签到 ,获得积分10
28秒前
qia8qia完成签到,获得积分10
30秒前
31秒前
32秒前
lzl完成签到,获得积分10
32秒前
荡乎宇宙如虚舟完成签到,获得积分10
33秒前
33秒前
张政发布了新的文献求助10
33秒前
三四五完成签到,获得积分10
34秒前
坦率依柔完成签到,获得积分10
34秒前
yyy发布了新的文献求助20
36秒前
37秒前
37秒前
40秒前
小马甲应助hpy采纳,获得10
42秒前
11关注了科研通微信公众号
42秒前
zsyzxb发布了新的文献求助10
44秒前
张政完成签到,获得积分10
46秒前
乔木木发布了新的文献求助10
49秒前
星辰大海应助花花飞啊飞采纳,获得10
49秒前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3279568
求助须知:如何正确求助?哪些是违规求助? 2917723
关于积分的说明 8387463
捐赠科研通 2588552
什么是DOI,文献DOI怎么找? 1410301
科研通“疑难数据库(出版商)”最低求助积分说明 657639
邀请新用户注册赠送积分活动 638793