Machine-Learning Model for Prediction of Cefepime Susceptibility in Escherichia coli from Whole-Genome Sequencing Data

头孢吡肟 肉汤微量稀释 生物 大肠杆菌 全基因组测序 临床微生物学 微生物学 抗菌剂 基因组 最小抑制浓度 计算生物学 遗传学 细菌 头孢他啶 基因 铜绿假单胞菌
作者
Romney M. Humphries,Eugene Bragin,Julian Parkhill,Grace Morales,Jonathan E. Schmitz,Paul A. Rhodes
出处
期刊:Journal of Clinical Microbiology [American Society for Microbiology]
卷期号:61 (3)
标识
DOI:10.1128/jcm.01431-22
摘要

The declining cost of performing bacterial whole-genome sequencing (WGS) coupled with the availability of large libraries of sequence data for well-characterized isolates have enabled the application of machine-learning (ML) methods to the development of nonlinear sequence-based predictive models. We tested the ML-based model developed by Next Gen Diagnostics for prediction of cefepime phenotypic susceptibility results in Escherichia coli. A cohort of 100 isolates of E. coli recovered from urine (n = 77) and blood (n = 23) cultures were used. The cefepime MIC was determined in triplicate by reference broth microdilution and classified as susceptible (MIC of ≤2 μg/mL) or not susceptible (MIC of ≥4 μg/mL) using the 2022 Clinical and Laboratory Standards Institute breakpoints. Five isolates generated both susceptible and not susceptible MIC results, yielding categorical agreement of 95% for the reference method to itself. Categorical agreement of ML to MIC interpretations was 97%, with 2 very major (false, susceptible) and 1 major (false, not susceptible) errors. One very major error occurred for an isolate with blaCTX-M-27 (MIC mode, ≥32 μg/mL) and one for an isolate with blaTEM-34 for which the MIC cefepime mode was 4 μg/mL. One major error was for an isolate with blaCTX-M-27 but with a MIC mode of 2 μg/mL. These preliminary data demonstrated performance of ML for a clinically important antimicrobial-species pair at a caliber similar to phenotypic methods, encouraging wider development of sequence-based susceptibility prediction and its validation and use in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
roshan发布了新的文献求助10
刚刚
奇异完成签到 ,获得积分10
刚刚
迟迟完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
wangji_2017发布了新的文献求助60
4秒前
4秒前
confident完成签到 ,获得积分10
4秒前
5秒前
善学以致用应助LYL采纳,获得10
5秒前
bixr发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
wwwweer完成签到,获得积分10
6秒前
李三阳发布了新的文献求助10
6秒前
畅快的煜祺完成签到,获得积分10
7秒前
麦芽糖完成签到,获得积分10
7秒前
7秒前
bkagyin应助大不了退学采纳,获得10
8秒前
8秒前
奋力的王打工人完成签到,获得积分10
8秒前
9秒前
斯文败类应助chen采纳,获得10
9秒前
9秒前
牛太虚完成签到,获得积分10
9秒前
学生物的橘子应助猪猪hero采纳,获得10
9秒前
kkk完成签到 ,获得积分10
10秒前
11秒前
xLi完成签到,获得积分10
12秒前
12秒前
12秒前
莲枳榴莲完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
Yonina发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099