Machine-Learning Model for Prediction of Cefepime Susceptibility in Escherichia coli from Whole-Genome Sequencing Data

头孢吡肟 肉汤微量稀释 生物 大肠杆菌 全基因组测序 临床微生物学 微生物学 抗菌剂 基因组 最小抑制浓度 计算生物学 遗传学 细菌 头孢他啶 基因 铜绿假单胞菌
作者
Romney M. Humphries,Eugene Bragin,Julian Parkhill,Grace Morales,Jonathan E. Schmitz,Paul A. Rhodes
出处
期刊:Journal of Clinical Microbiology [American Society for Microbiology]
卷期号:61 (3)
标识
DOI:10.1128/jcm.01431-22
摘要

The declining cost of performing bacterial whole-genome sequencing (WGS) coupled with the availability of large libraries of sequence data for well-characterized isolates have enabled the application of machine-learning (ML) methods to the development of nonlinear sequence-based predictive models. We tested the ML-based model developed by Next Gen Diagnostics for prediction of cefepime phenotypic susceptibility results in Escherichia coli. A cohort of 100 isolates of E. coli recovered from urine (n = 77) and blood (n = 23) cultures were used. The cefepime MIC was determined in triplicate by reference broth microdilution and classified as susceptible (MIC of ≤2 μg/mL) or not susceptible (MIC of ≥4 μg/mL) using the 2022 Clinical and Laboratory Standards Institute breakpoints. Five isolates generated both susceptible and not susceptible MIC results, yielding categorical agreement of 95% for the reference method to itself. Categorical agreement of ML to MIC interpretations was 97%, with 2 very major (false, susceptible) and 1 major (false, not susceptible) errors. One very major error occurred for an isolate with blaCTX-M-27 (MIC mode, ≥32 μg/mL) and one for an isolate with blaTEM-34 for which the MIC cefepime mode was 4 μg/mL. One major error was for an isolate with blaCTX-M-27 but with a MIC mode of 2 μg/mL. These preliminary data demonstrated performance of ML for a clinically important antimicrobial-species pair at a caliber similar to phenotypic methods, encouraging wider development of sequence-based susceptibility prediction and its validation and use in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可爱的函函应助CFC12采纳,获得10
1秒前
Ava应助文艺迎夏采纳,获得10
1秒前
ly发布了新的文献求助10
2秒前
cora发布了新的文献求助10
2秒前
鲸落发布了新的文献求助10
2秒前
wangye发布了新的文献求助10
3秒前
李爱国应助南梦娇采纳,获得10
3秒前
3秒前
3秒前
lulu发布了新的文献求助10
4秒前
来了完成签到,获得积分10
4秒前
救我发布了新的文献求助10
5秒前
5秒前
开心妙之完成签到,获得积分20
5秒前
小二郎应助cora采纳,获得10
5秒前
桥豆麻袋发布了新的文献求助50
5秒前
5秒前
强壮的美女完成签到,获得积分10
5秒前
5秒前
领导范儿应助橘涂采纳,获得10
6秒前
静静静发布了新的文献求助10
6秒前
7秒前
7秒前
佐哥完成签到,获得积分10
7秒前
11111完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
霉头脑完成签到 ,获得积分10
8秒前
科研通AI6应助张默言采纳,获得10
8秒前
赘婿应助蓝书签采纳,获得30
9秒前
yx阿聪发布了新的文献求助10
10秒前
开心妙之发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
梁蓉完成签到,获得积分20
11秒前
Zidawhy发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343