头孢吡肟
肉汤微量稀释
生物
大肠杆菌
全基因组测序
临床微生物学
微生物学
抗菌剂
基因组
最小抑制浓度
计算生物学
遗传学
细菌
头孢他啶
基因
铜绿假单胞菌
作者
Romney M. Humphries,Eugene Bragin,Julian Parkhill,Grace Morales,Jonathan E. Schmitz,Paul A. Rhodes
摘要
The declining cost of performing bacterial whole-genome sequencing (WGS) coupled with the availability of large libraries of sequence data for well-characterized isolates have enabled the application of machine-learning (ML) methods to the development of nonlinear sequence-based predictive models. We tested the ML-based model developed by Next Gen Diagnostics for prediction of cefepime phenotypic susceptibility results in Escherichia coli. A cohort of 100 isolates of E. coli recovered from urine (n = 77) and blood (n = 23) cultures were used. The cefepime MIC was determined in triplicate by reference broth microdilution and classified as susceptible (MIC of ≤2 μg/mL) or not susceptible (MIC of ≥4 μg/mL) using the 2022 Clinical and Laboratory Standards Institute breakpoints. Five isolates generated both susceptible and not susceptible MIC results, yielding categorical agreement of 95% for the reference method to itself. Categorical agreement of ML to MIC interpretations was 97%, with 2 very major (false, susceptible) and 1 major (false, not susceptible) errors. One very major error occurred for an isolate with blaCTX-M-27 (MIC mode, ≥32 μg/mL) and one for an isolate with blaTEM-34 for which the MIC cefepime mode was 4 μg/mL. One major error was for an isolate with blaCTX-M-27 but with a MIC mode of 2 μg/mL. These preliminary data demonstrated performance of ML for a clinically important antimicrobial-species pair at a caliber similar to phenotypic methods, encouraging wider development of sequence-based susceptibility prediction and its validation and use in clinical practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI