3D Convolutional Neural Networks for Sperm Motility Prediction

计算机科学 精液 卷积神经网络 人工智能 精液分析 深度学习 精子活力 精子 男科 不育 生物 医学 怀孕 遗传学
作者
Voon Hueh Goh,Muhammad Amir As’ari,Lukman Hakim Ismail
标识
DOI:10.1109/icicyta57421.2022.10037950
摘要

Semen analysis is an important analysis for male infertility primary investigation. Sperm motility is one of the main indicators for pregnancy and conception rate, and it could be classified into three motility groups which are progressive, non-progressive and immotile spermatozoa according to WHO manual. Manual semen analysis has been revealed with accuracy and precision limitation due to noncompliance to guidelines and procedures. On the other hand, the commercialized automated semen analyzer is not recommended for clinical use due to their analysis results not comparable with manual methods. Their handling procedures received criticisms as the proper guidelines were not discussed and reviewed by WHO. In this study, we aim to employ deep learning methods for sperm motility prediction using three-dimensional CNN (3DCNN). Firstly, datasets are prepared by extracting dense optical flow frames with different stride number from semen videos and stacked together forming 3D input. Next, a 3DCNN was designed to adopt stacked dense optical flow frames and the results obtained using datasets generated with different stride number were compared and analysed. As a result, 3DCNN has better accuracy compared with other deep learning approaches explored by other similar research works with average mean absolute error of 8.506. The source code for this research work is made public at Github repository: https://github.com/GohVh/3DCNN-SpermMotilityPrediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
lii发布了新的文献求助10
2秒前
hz发布了新的文献求助10
2秒前
烟花应助咪咪不吃糖采纳,获得10
3秒前
力口氵由发布了新的文献求助10
3秒前
4秒前
5秒前
Orange应助lii采纳,获得10
5秒前
5秒前
6秒前
Tantantan发布了新的文献求助10
6秒前
华仔应助WENXIAN采纳,获得10
7秒前
JamesPei应助动听山芙采纳,获得10
8秒前
8秒前
大模型应助Sunny采纳,获得10
8秒前
ooooo发布了新的文献求助10
9秒前
songjin111111发布了新的文献求助10
9秒前
鲤鱼初柳发布了新的文献求助10
10秒前
10秒前
喵喵酱完成签到,获得积分10
11秒前
DZ完成签到 ,获得积分10
11秒前
dddim发布了新的文献求助10
11秒前
nana湘发布了新的文献求助10
13秒前
13秒前
大模型应助小肚肚采纳,获得10
13秒前
鑫光熠熠发布了新的文献求助10
14秒前
songjin111111完成签到,获得积分10
14秒前
丘比特应助喵喵酱采纳,获得10
14秒前
16秒前
16秒前
wenx完成签到,获得积分10
16秒前
17秒前
dddim完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
Cameron完成签到,获得积分10
20秒前
yummy发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152350
求助须知:如何正确求助?哪些是违规求助? 2803575
关于积分的说明 7854759
捐赠科研通 2461234
什么是DOI,文献DOI怎么找? 1310176
科研通“疑难数据库(出版商)”最低求助积分说明 629138
版权声明 601765