3D Convolutional Neural Networks for Sperm Motility Prediction

计算机科学 精液 卷积神经网络 人工智能 精液分析 深度学习 精子活力 精子 男科 不育 生物 医学 怀孕 遗传学
作者
Voon Hueh Goh,Muhammad Amir As’ari,Lukman Hakim Ismail
标识
DOI:10.1109/icicyta57421.2022.10037950
摘要

Semen analysis is an important analysis for male infertility primary investigation. Sperm motility is one of the main indicators for pregnancy and conception rate, and it could be classified into three motility groups which are progressive, non-progressive and immotile spermatozoa according to WHO manual. Manual semen analysis has been revealed with accuracy and precision limitation due to noncompliance to guidelines and procedures. On the other hand, the commercialized automated semen analyzer is not recommended for clinical use due to their analysis results not comparable with manual methods. Their handling procedures received criticisms as the proper guidelines were not discussed and reviewed by WHO. In this study, we aim to employ deep learning methods for sperm motility prediction using three-dimensional CNN (3DCNN). Firstly, datasets are prepared by extracting dense optical flow frames with different stride number from semen videos and stacked together forming 3D input. Next, a 3DCNN was designed to adopt stacked dense optical flow frames and the results obtained using datasets generated with different stride number were compared and analysed. As a result, 3DCNN has better accuracy compared with other deep learning approaches explored by other similar research works with average mean absolute error of 8.506. The source code for this research work is made public at Github repository: https://github.com/GohVh/3DCNN-SpermMotilityPrediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
landolu发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
4秒前
耍酷的夏云关注了科研通微信公众号
5秒前
Lynnyue完成签到,获得积分10
5秒前
if发布了新的文献求助100
7秒前
7秒前
8秒前
weven完成签到 ,获得积分10
8秒前
9秒前
叶落花开应助Anquan采纳,获得10
12秒前
车小帅完成签到,获得积分10
14秒前
AI倩完成签到 ,获得积分10
17秒前
17秒前
17秒前
顾矜应助好玩和有趣采纳,获得10
18秒前
萊以托尔福完成签到,获得积分10
18秒前
平淡思雁完成签到,获得积分10
19秒前
西兰花的科研小助手完成签到,获得积分10
22秒前
小猫多鱼发布了新的文献求助10
22秒前
呆呆完成签到,获得积分10
23秒前
忆韵发布了新的文献求助10
23秒前
善良的灵羊完成签到 ,获得积分10
23秒前
25秒前
25秒前
鸠摩智完成签到,获得积分10
26秒前
高贵绿草完成签到,获得积分10
27秒前
圣晟胜发布了新的文献求助10
29秒前
devil发布了新的文献求助20
30秒前
Hina完成签到,获得积分10
30秒前
31秒前
33秒前
Fairy完成签到,获得积分10
34秒前
林林林发布了新的文献求助10
35秒前
lihang完成签到 ,获得积分10
35秒前
36秒前
james完成签到,获得积分10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849