Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation

计算机科学 编码器 变压器 卷积神经网络 人工智能 分割 深度学习 图像分割 模式识别(心理学) 计算机视觉 电压 量子力学 操作系统 物理
作者
Hu Cao,Yueyue Wang,Joy Chen,Dongsheng Jiang,Xiaopeng Zhang,Qi Tian,Manning Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 205-218 被引量:1061
标识
DOI:10.1007/978-3-031-25066-8_9
摘要

In the past few years, convolutional neural networks (CNNs) have achieved milestones in medical image analysis. In particular, deep neural networks based on U-shaped architecture and skip-connections have been widely applied in various medical image tasks. However, although CNN has achieved excellent performance, it cannot learn global semantic information interaction well due to the locality of convolution operation. In this paper, we propose Swin-Unet, which is an Unet-like pure Transformer for medical image segmentation. The tokenized image patches are fed into the Transformer-based U-shaped Encoder-Decoder architecture with skip-connections for local-global semantic feature learning. Specifically, we use a hierarchical Swin Transformer with shifted windows as the encoder to extract context features. And a symmetric Swin Transformer-based decoder with a patch expanding layer is designed to perform the up-sampling operation to restore the spatial resolution of the feature maps. Under the direct down-sampling and up-sampling of the inputs and outputs by $$4{\times }$$ , experiments on multi-organ and cardiac segmentation tasks demonstrate that the pure Transformer-based U-shaped Encoder-Decoder network outperforms those methods with full-convolution or the combination of transformer and convolution. The codes have been publicly available at the link ( https://github.com/HuCaoFighting/Swin-Unet ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助纯2025采纳,获得10
1秒前
1秒前
太叔从蓉完成签到,获得积分10
2秒前
Estrella应助海人采纳,获得10
4秒前
5秒前
KK完成签到 ,获得积分10
5秒前
你好啊发布了新的文献求助10
6秒前
yanxuhuan完成签到,获得积分10
6秒前
学术通zzz完成签到,获得积分10
7秒前
搜集达人应助凛冬采纳,获得10
8秒前
Cher1she完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
小马甲应助你好啊采纳,获得10
13秒前
CipherSage应助don采纳,获得10
13秒前
单薄的金鱼完成签到,获得积分10
13秒前
元谷雪应助pangpang采纳,获得10
15秒前
科研通AI2S应助漂亮的素采纳,获得10
15秒前
17秒前
情怀应助唐帅采纳,获得10
19秒前
柿柿发布了新的文献求助10
19秒前
科研通AI2S应助mrcat采纳,获得10
22秒前
LRxxx发布了新的文献求助10
27秒前
dadii发布了新的文献求助10
27秒前
烂漫念文完成签到,获得积分10
28秒前
28秒前
星辰大海应助李浅墨采纳,获得10
29秒前
宁静致远完成签到,获得积分10
29秒前
柿柿完成签到,获得积分10
29秒前
科研通AI2S应助单薄的金鱼采纳,获得10
30秒前
GAO完成签到,获得积分10
33秒前
大分子完成签到,获得积分10
33秒前
34秒前
Estrella应助LFY采纳,获得10
37秒前
唐帅完成签到,获得积分20
37秒前
苦我心志完成签到,获得积分10
37秒前
Nnn完成签到,获得积分10
38秒前
38秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790837
关于积分的说明 7796725
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301727
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194