NDVI Forecasting Model Based on the Combination of Time Series Decomposition and CNN – LSTM

归一化差异植被指数 降水 时间序列 植被(病理学) 系列(地层学) 卷积神经网络 环境科学 气象学 遥感 气候变化 计算机科学 人工智能 机器学习 地理 生态学 地质学 古生物学 病理 生物 医学
作者
Peiqiang Gao,Wenfeng Du,Qingwen Lei,Juezhi Li,Shuaiji Zhang,Ning Li
出处
期刊:Water Resources Management [Springer Nature]
卷期号:37 (4): 1481-1497 被引量:27
标识
DOI:10.1007/s11269-022-03419-3
摘要

Normalized difference vegetation index (NDVI) is the most widely used factor in the growth status of vegetation, and improving the prediction of NDVI is crucial to the advancement of regional ecology. In this study, a novel NDVI forecasting model was developed by combining time series decomposition (TSD), convolutional neural networks (CNN) and long short-term memory (LSTM). Two forecasting models of climatic factors and four NDVI forecasting models were developed to validate the performance of the TSD-CNN-LSTM model and investigate the NDVI's response to climatic factors. Results indicate that the TSD-CNN-LSTM model has the best prediction performance across all series, with the RMSE, NSE and MAE of NDVI prediction being 0.0573, 0.9617 and 0.0447, respectively. Furthermore, the TP-N (Temperature & Precipitation-NDVI) model has a greater effect than the T-N (Temperature-NDVI) and P-N (Precipitation-NDVI) models, according to the climatic factors-based NDVI forecasting model. Based on the results of the correlation analysis, it can be concluded that changes in NDVI are driven by a combination of temperature and precipitation, with temperature playing the most significant role. The preceding findings serve as a helpful reference and guide for studying vegetation growth in response to climate changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴完成签到,获得积分20
刚刚
wwe发布了新的文献求助10
1秒前
万能图书馆应助hhj采纳,获得10
1秒前
1秒前
2秒前
刘丽完成签到,获得积分20
3秒前
3秒前
hami发布了新的文献求助10
3秒前
要减肥的夜蕾完成签到,获得积分20
3秒前
MLL关闭了MLL文献求助
3秒前
FiFi完成签到 ,获得积分10
4秒前
mei发布了新的文献求助10
4秒前
香蕉觅云应助zkc采纳,获得10
5秒前
5秒前
6秒前
蔺山河完成签到,获得积分10
6秒前
樱铃完成签到,获得积分10
6秒前
6秒前
人小鸭儿大完成签到 ,获得积分10
6秒前
6秒前
7秒前
fangtong发布了新的文献求助10
7秒前
慈祥的梦露完成签到,获得积分10
7秒前
Akim应助chai采纳,获得10
7秒前
科研鬼才完成签到,获得积分20
7秒前
8秒前
珃苒冉`发布了新的文献求助10
9秒前
9秒前
10秒前
junheng740发布了新的文献求助10
10秒前
大树发布了新的文献求助10
10秒前
老艺人发布了新的文献求助10
11秒前
啊喔完成签到,获得积分20
11秒前
拉普拉斯妖完成签到,获得积分10
11秒前
12秒前
大个应助贪玩的曲奇采纳,获得10
12秒前
爆米花应助白秋寒采纳,获得10
12秒前
12秒前
FashionBoy应助yhx采纳,获得10
12秒前
聚露为洋完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003