NDVI Forecasting Model Based on the Combination of Time Series Decomposition and CNN – LSTM

归一化差异植被指数 降水 时间序列 植被(病理学) 系列(地层学) 卷积神经网络 环境科学 气象学 遥感 气候变化 计算机科学 人工智能 机器学习 地理 生态学 地质学 医学 古生物学 病理 生物
作者
Peiqiang Gao,Wenfeng Du,Qingwen Lei,Juezhi Li,Shuaiji Zhang,Ning Li
出处
期刊:Water Resources Management [Springer Nature]
卷期号:37 (4): 1481-1497 被引量:27
标识
DOI:10.1007/s11269-022-03419-3
摘要

Normalized difference vegetation index (NDVI) is the most widely used factor in the growth status of vegetation, and improving the prediction of NDVI is crucial to the advancement of regional ecology. In this study, a novel NDVI forecasting model was developed by combining time series decomposition (TSD), convolutional neural networks (CNN) and long short-term memory (LSTM). Two forecasting models of climatic factors and four NDVI forecasting models were developed to validate the performance of the TSD-CNN-LSTM model and investigate the NDVI's response to climatic factors. Results indicate that the TSD-CNN-LSTM model has the best prediction performance across all series, with the RMSE, NSE and MAE of NDVI prediction being 0.0573, 0.9617 and 0.0447, respectively. Furthermore, the TP-N (Temperature & Precipitation-NDVI) model has a greater effect than the T-N (Temperature-NDVI) and P-N (Precipitation-NDVI) models, according to the climatic factors-based NDVI forecasting model. Based on the results of the correlation analysis, it can be concluded that changes in NDVI are driven by a combination of temperature and precipitation, with temperature playing the most significant role. The preceding findings serve as a helpful reference and guide for studying vegetation growth in response to climate changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助lion采纳,获得10
刚刚
刚刚
nihao完成签到 ,获得积分10
1秒前
1秒前
1秒前
ZephyrZY完成签到,获得积分10
1秒前
2秒前
Cunese完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
wsy发布了新的文献求助10
5秒前
zhengriqian发布了新的文献求助10
5秒前
共享精神应助义气的青枫采纳,获得10
5秒前
bt4567发布了新的文献求助10
5秒前
5秒前
yuisl完成签到,获得积分10
6秒前
6秒前
内向灵凡发布了新的文献求助10
6秒前
rei402完成签到,获得积分20
7秒前
xuxingjie发布了新的文献求助10
7秒前
wf发布了新的文献求助10
7秒前
Sea_U发布了新的文献求助10
7秒前
lifan完成签到,获得积分10
8秒前
英俊的铭应助qwwee采纳,获得10
9秒前
4444发布了新的文献求助10
9秒前
英姑应助时尚的紫山采纳,获得10
9秒前
9秒前
10秒前
甜甜的幼珊完成签到,获得积分10
10秒前
吃人不眨眼应助跑快点采纳,获得20
10秒前
11秒前
大小米发布了新的文献求助30
11秒前
hyd1640发布了新的文献求助200
13秒前
sy发布了新的文献求助10
13秒前
rei402发布了新的文献求助10
13秒前
小老鼠完成签到 ,获得积分10
14秒前
我不爱池鱼应助果冻采纳,获得10
14秒前
14秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581109
求助须知:如何正确求助?哪些是违规求助? 4665690
关于积分的说明 14757767
捐赠科研通 4607511
什么是DOI,文献DOI怎么找? 2528260
邀请新用户注册赠送积分活动 1497575
关于科研通互助平台的介绍 1466462