CNN-Based Transformer Model for Fault Detection in Power System Networks

变压器 深度学习 编码器 卷积神经网络 计算机科学 人工神经网络 故障检测与隔离 电力系统 特征提取 断层(地质) 人工智能 故障指示器 MATLAB语言 工程类 模式识别(心理学) 电子工程 功率(物理) 电压 电气工程 地质学 物理 地震学 执行机构 操作系统 量子力学
作者
Jibin B. Thomas,Saurabh S. Chaudhari,K.V. Shihabudheen,Nishchal K. Verma
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-10 被引量:52
标识
DOI:10.1109/tim.2023.3238059
摘要

Fault detection and localization in electrical power lines has long been a crucial challenge for electrical engineers as it allows the detected fault to be isolated and recovered promptly. These faults, if neglected, can rupture the normal operation of the network and drastically damage the power lines and the equipment attached to it. The wastage of power and money due to these faults can be harmful to the economy of an industry or even a country. Therefore, efficient fault detection mechanisms have become crucial for the well-being of this power-hungry world. This research presents an end-to-end deep learning strategy to detect and localize symmetrical and unsymmetrical faults as well as high-impedance faults (HIFs) in a distribution system. This research proposes a novel deep convolutional neural network (CNN) transformer model to automatically detect the type and phase of the fault as well as the location of the fault. The proposed model utilizes 1-D deep CNNs for feature extraction and transformer encoder for sequence learning. The transformer encoder utilizes an attention mechanism to integrate the sequence embeddings and focus on significant time steps to learn long-term dependence to extract the context of the temporal current data. The different faults were simulated in MATLAB Simulink using IEEE 14-bus distribution system. The proposed models were found to produce better performance on the test database when evaluated using F1-Score, Matthews correlation coefficient (MCC), and accuracy. The models also produced better predictions on HIFs compared to conventional fault-detection techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
行隐应助sxh采纳,获得10
1秒前
斯文的断秋完成签到,获得积分10
1秒前
难过的访文完成签到 ,获得积分10
1秒前
上官绮兰发布了新的文献求助10
2秒前
zhouuuuuu发布了新的文献求助10
2秒前
天真小甜瓜完成签到,获得积分10
3秒前
JamesPei应助生信迷茫采纳,获得10
3秒前
Akim应助LLLLL采纳,获得10
3秒前
额我认为发布了新的文献求助30
4秒前
dandan完成签到 ,获得积分10
4秒前
5秒前
5秒前
tian发布了新的文献求助10
5秒前
袁钰琳完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
泡泡完成签到 ,获得积分10
6秒前
Mister.WangK完成签到,获得积分10
7秒前
彪壮的含双完成签到,获得积分20
7秒前
李健应助haruka采纳,获得10
8秒前
zhouuuuuu完成签到,获得积分10
8秒前
徐小锤完成签到 ,获得积分10
8秒前
失眠惜海发布了新的文献求助10
9秒前
9秒前
10秒前
漂亮的千雁完成签到,获得积分20
10秒前
11秒前
12秒前
雾w完成签到,获得积分10
12秒前
占小瓜完成签到,获得积分20
12秒前
ATOM完成签到,获得积分10
12秒前
脆脆薯条完成签到,获得积分10
12秒前
Owen应助xxh采纳,获得10
13秒前
13秒前
李栗粒粒发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助鲨鱼也蛀牙采纳,获得10
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
ACUTE EFFECTS OF MYOFASCIAL RELEASE TECHNIQUE ON FLEXIBILITY AND PAIN: OUTCOME FOR CHRONIC LOW BACK PAIN 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227308
求助须知:如何正确求助?哪些是违规求助? 2875428
关于积分的说明 8190783
捐赠科研通 2542679
什么是DOI,文献DOI怎么找? 1372868
科研通“疑难数据库(出版商)”最低求助积分说明 646596
邀请新用户注册赠送积分活动 621017