清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SCTANet: A Spatial Attention-Guided CNN-Transformer Aggregation Network for Deep Face Image Super-Resolution

计算机科学 增采样 像素 图像分辨率 人工智能 计算机视觉 卷积神经网络 特征提取 块(置换群论) 迭代重建 模式识别(心理学) 嵌入 图像(数学) 数学 几何学
作者
Qiqi Bao,Yunmeng Liu,Bowen Gang,Wenming Yang,Qingmin Liao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8554-8565 被引量:42
标识
DOI:10.1109/tmm.2023.3238522
摘要

Numerous CNN-based algorithms have been proposed to reconstruct high-quality face images. However, the inability of convolution operation to model long-distance relationships limits the performance of the CNN-based methods. Moreover, in the high-resolution (HR) image reconstruction stage, with the well decoded feature representations, more efficient architecture design can be explored to synthesize pixel-level image details. In this work, we propose a spatial attention-guided CNN-Transformer aggregation network (SCTANet) for face image super-resolution (FSR) tasks. The core component in the deep feature extraction stage is the Hybrid Attention Aggregation (HAA) block. The HAA block has two parallel paths, one for the Residual Spatial Attention (RSA) block, the other for the Multi-scale Patch embedding and Spatial-attention Masked Transformer (MPSMT) block. The HAA block combines the strengths of CNN and transformer to effectively exploit both local and global information. For the reconstruction stage, we propose to use the Sub-pixel MLP-based Upsampling (SMU) module instead of the conventional CNN architecture. The SMU module promotes the reconstruction of pixel-level image details and reduces computational complexity. Extensive experiments on both synthetic and real-world face datasets demonstrate the superiority of our proposed SCTANet over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助niko采纳,获得10
9秒前
善学以致用应助niko采纳,获得10
9秒前
思源应助niko采纳,获得10
9秒前
田様应助niko采纳,获得10
9秒前
冷傲半邪完成签到,获得积分10
9秒前
11秒前
24秒前
49秒前
李铛铛发布了新的文献求助10
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6应助李铛铛采纳,获得10
1分钟前
1分钟前
1分钟前
Everything完成签到,获得积分10
1分钟前
1分钟前
1分钟前
niko发布了新的文献求助10
1分钟前
niko发布了新的文献求助10
1分钟前
niko发布了新的文献求助30
1分钟前
niko发布了新的文献求助10
1分钟前
niko发布了新的文献求助30
1分钟前
niko发布了新的文献求助10
1分钟前
niko发布了新的文献求助10
1分钟前
niko发布了新的文献求助10
1分钟前
niko发布了新的文献求助10
1分钟前
niko发布了新的文献求助10
1分钟前
niko发布了新的文献求助10
1分钟前
niko发布了新的文献求助10
1分钟前
酷炫凡完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534416
求助须知:如何正确求助?哪些是违规求助? 4622404
关于积分的说明 14582630
捐赠科研通 4562632
什么是DOI,文献DOI怎么找? 2500278
邀请新用户注册赠送积分活动 1479820
关于科研通互助平台的介绍 1451022