Machine‐Learning‐Assisted Nanozyme Design: Lessons from Materials and Engineered Enzymes

纳米技术 纳米材料 生化工程 计算机科学 材料科学 工程类
作者
Jie Zhuang,Adam C. Midgley,Yonghua Wei,Qiqi Liu,Deling Kong,Xinglu Huang
出处
期刊:Advanced Materials [Wiley]
被引量:42
标识
DOI:10.1002/adma.202210848
摘要

Abstract Nanozymes are nanomaterials that exhibit enzyme‐like biomimicry. In combination with intrinsic characteristics of nanomaterials, nanozymes have broad applicability in materials science, chemical engineering, bioengineering, biochemistry, and disease theranostics. Recently, the heterogeneity of published results has highlighted the complexity and diversity of nanozymes in terms of consistency of catalytic capacity. Machine learning (ML) shows promising potential for discovering new materials, yet it remains challenging for the design of new nanozymes based on ML approaches. Alternatively, ML is employed to promote optimization of intelligent design and application of catalytic materials and engineered enzymes. Incorporation of the successful ML algorithms used in the intelligent design of catalytic materials and engineered enzymes can concomitantly facilitate the guided development of next‐generation nanozymes with desirable properties. Here, recent progress in ML, its utilization in the design of catalytic materials and enzymes, and how emergent ML applications serve as promising strategies to circumvent challenges associated with time‐expensive and laborious testing in nanozyme research and development are summarized. The potential applications of successful examples of ML‐aided catalytic materials and engineered enzymes in nanozyme design are also highlighted, with special focus on the unified aims in enhancing design and recapitulation of substrate selectivity and catalytic activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兜有米发布了新的文献求助10
1秒前
3秒前
5秒前
端庄擎汉发布了新的文献求助10
5秒前
无花果应助zzk采纳,获得10
6秒前
arshtkryh完成签到,获得积分10
6秒前
1sss完成签到,获得积分20
7秒前
wzc完成签到,获得积分20
8秒前
充电宝应助秀丽的慕灵采纳,获得10
8秒前
dudu发布了新的文献求助10
9秒前
9秒前
9秒前
123发布了新的文献求助10
10秒前
11秒前
12秒前
wangayting发布了新的文献求助30
13秒前
波奇酱完成签到,获得积分10
14秒前
畅快访蕊发布了新的文献求助10
14秒前
15秒前
巫马尔槐发布了新的文献求助10
17秒前
liu.cc发布了新的文献求助10
17秒前
zzk发布了新的文献求助10
17秒前
Dr-张显华完成签到,获得积分10
18秒前
18秒前
cwy发布了新的文献求助10
18秒前
19秒前
WZH发布了新的文献求助10
20秒前
今后应助整齐凌萱采纳,获得10
21秒前
Ava应助端庄擎汉采纳,获得10
21秒前
22秒前
不知道发布了新的文献求助10
22秒前
24秒前
24秒前
zhangqq完成签到,获得积分10
24秒前
852应助cwy采纳,获得10
25秒前
issl完成签到,获得积分10
26秒前
26秒前
完美世界应助wangayting采纳,获得30
26秒前
houl发布了新的文献求助10
27秒前
27秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139285
求助须知:如何正确求助?哪些是违规求助? 2790137
关于积分的说明 7794105
捐赠科研通 2446563
什么是DOI,文献DOI怎么找? 1301261
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109