Optimization of urban terminal delivery routes using fuzzy genetic algorithm and its practical application

终端(电信) 计算机科学 模糊逻辑 遗传算法 算法 人工智能 计算机网络 机器学习
作者
W. Tang
出处
期刊:Journal of Computational Methods in Sciences and Engineering [IOS Press]
标识
DOI:10.1177/14727978251323125
摘要

As urban populations grow and delivery demands surge, the computational complexity of route optimization problems escalates significantly. Traditional algorithms often struggle with low efficiency, making it challenging to achieve satisfactory solutions within a reasonable timeframe. To address these limitations, this paper introduces a fuzzy genetic algorithm (FGA) that integrates fuzzy logic to model uncertainties inherent in the delivery process, such as traffic congestion, weather disruptions, and demand fluctuations. By leveraging the multi-objective optimization capabilities of genetic algorithms, the proposed FGA comprehensively considers key factors such as delivery time, transportation costs, and customer satisfaction to generate optimal routes. The practical application of this approach demonstrates its effectiveness: the optimized delivery routes significantly reduce delivery times and transportation costs while enhancing customer satisfaction levels. Statistical analysis reveals p-values below 0.05, confirming the significant impact of the FGA on urban terminal delivery optimization. This research not only addresses the computational inefficiencies of traditional methods but also provides a robust framework for handling dynamic and uncertain urban environments. The integration of fuzzy logic and genetic algorithms represents a pioneering step toward sustainable urban logistics, offering both economic value—through cost savings—and social benefits—via improved service quality. In summary, the fuzzy genetic algorithm emerges as a powerful tool for modern urban delivery systems, enabling smarter decision-making and fostering greener, more efficient cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助王曼曼采纳,获得10
刚刚
1秒前
1秒前
you发布了新的文献求助10
1秒前
谢昱发布了新的文献求助10
1秒前
劲秉应助月白采纳,获得10
2秒前
香蕉觅云应助利利是是采纳,获得10
2秒前
清秋若月完成签到,获得积分10
2秒前
黄健伟发布了新的文献求助10
2秒前
2秒前
lx发布了新的文献求助10
2秒前
Vinca发布了新的文献求助10
3秒前
Carly完成签到,获得积分20
3秒前
3秒前
3秒前
赟yun完成签到,获得积分0
3秒前
存儿发布了新的文献求助10
4秒前
天天快乐应助进取拼搏采纳,获得10
4秒前
霸气乐菱完成签到,获得积分20
4秒前
5秒前
eli完成签到,获得积分10
6秒前
霸气乐菱发布了新的文献求助10
8秒前
俏皮的黑米完成签到,获得积分10
8秒前
深情安青应助詹成宇采纳,获得10
9秒前
默默柚子发布了新的文献求助10
9秒前
9秒前
10秒前
bkagyin应助霸气的青柏采纳,获得10
10秒前
peanuttt发布了新的文献求助30
10秒前
11秒前
鸵鸟1437发布了新的文献求助10
11秒前
华仔应助pjh采纳,获得10
12秒前
NexusExplorer应助lvlulu采纳,获得10
12秒前
liudiqiu应助花痴的服饰采纳,获得10
12秒前
13秒前
斯文败类应助风中的丝袜采纳,获得10
13秒前
大模型应助风中的丝袜采纳,获得30
13秒前
Lucas应助风中的丝袜采纳,获得10
13秒前
打打应助风中的丝袜采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524656
求助须知:如何正确求助?哪些是违规求助? 3105505
关于积分的说明 9274438
捐赠科研通 2802572
什么是DOI,文献DOI怎么找? 1538099
邀请新用户注册赠送积分活动 716017
科研通“疑难数据库(出版商)”最低求助积分说明 709140