Quantification and classification of lumbar disc herniation on axial magnetic resonance images using deep learning models

人工智能 分割 磁共振成像 模式识别(心理学) 科恩卡帕 卡帕 交叉口(航空) 数据集 试验装置 图像分割 计算机科学 置信区间 腰椎 核医学 数学 医学 放射科 统计 机器学习 工程类 航空航天工程 几何学
作者
Elzat Elham-Yilizati Yilihamu,Jun Shang,Zhihai Su,Jintao Yang,Kun Zhao,Hai Zhong,Shiqing Feng
出处
期刊:Radiologia Medica [Springer Science+Business Media]
标识
DOI:10.1007/s11547-025-01996-y
摘要

Abstract Purpose Application of a deep learning model visualization plugin for rapid and accurate automatic quantification and classification of lumbar disc herniation (LDH) types on axial T2-weighted MRIs. Methods Retrospective analysis of 2500 patients, with the training set comprising data from 2120 patients (25,554 images), an internal test set covering data from 80 patients (784 images), and an external test set including data from 300 patients (3285 images). To enhance implementation, this study categorized normal and bulging discs as a grade without significant abnormalities, defining the region and severity grades of LDH based on the relationship between the disc and the spinal canal. The automated detection training and validation process employed the YOLOv8 object detection model for target area localization, the YOLOv8-seg segmentation model for disc recognition, and the YOLOv8-pose keypoint detection model for positioning. Finally, the stability of the detection results was verified using metrics such as Intersection over Union (IoU), mean error (ME), precision (P), F1 score (F1), Kappa coefficient (kappa), and 95% confidence interval (95%CI). Results The segmentation model achieved an mAP50:95 of 98.12% and an IoU of 98.36% in the training set, while the keypoint detection model achieved an mAP50:95 of 93.58% with a mean error (ME) of 0.208 mm. For the internal and external test sets, the segmentation model’s IoU was 97.58 and 97.49%, respectively, while the keypoint model’s ME was 0.219 mm and 0.221 mm, respectively. In the quantification validation of the extent of LDH, P, F1, and kappa were measured. For LDH classification (18 categories), the internal and external test sets showed P = 81.21% and 74.50%, F1 = 81.26% and 74.42%, and kappa = 0.75 (95%CI 0.68, 0.82, p = 0.00) and 0.69 (95%CI 0.65, 0.73, p = 0.00), respectively. For the severity grades of LDH (four categories), the internal and external test sets showed P = 92.51% and 90.07%, F1 = 92.36% and 89.66%, and kappa = 0.88 (95%CI 0.80, 0.96, p = 0.00) and 0.85 (95%CI 0.81, 0.89, p = 0.00), respectively. For the regions of LDH (eight categories), the internal and external test sets showed P = 83.34% and 77.87%, F1 = 83.85% and 78.21%, and kappa = 0.77 (95%CI 0.70, 0.85, p = 0.00) and 0.71 (95%CI 0.67, 0.75, p = 0.00), respectively. Conclusion The automated aided diagnostic model achieved high performance in detecting and classifying LDH and demonstrated substantial consistency with expert classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raymond应助China采纳,获得10
2秒前
科研通AI5应助小五采纳,获得10
2秒前
Leechel完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
晨曦将至完成签到,获得积分10
4秒前
5秒前
让地球种满香菜完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
科研小陈发布了新的文献求助10
5秒前
6秒前
研友_ZGD9o8发布了新的文献求助10
6秒前
jiaojiao发布了新的文献求助10
6秒前
超体发布了新的文献求助30
7秒前
星辰大海应助晴晴采纳,获得10
7秒前
科研通AI5应助David采纳,获得10
8秒前
雷霆万钧完成签到 ,获得积分10
8秒前
张老师发布了新的文献求助10
9秒前
狒狒公主完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
wisher发布了新的文献求助10
11秒前
11秒前
万能图书馆应助smartCH采纳,获得10
11秒前
xiamu发布了新的文献求助10
11秒前
李爱国应助Rutin采纳,获得10
12秒前
Hannipham完成签到,获得积分10
12秒前
13秒前
zy完成签到 ,获得积分10
13秒前
14秒前
SciGPT应助jiaojiao采纳,获得10
14秒前
情怀应助暴富采纳,获得30
14秒前
14秒前
李健的小迷弟应助Sunshine采纳,获得10
15秒前
Cyan完成签到,获得积分10
17秒前
轻松豌豆完成签到,获得积分10
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3658707
求助须知:如何正确求助?哪些是违规求助? 3220706
关于积分的说明 9737132
捐赠科研通 2929876
什么是DOI,文献DOI怎么找? 1604142
邀请新用户注册赠送积分活动 757000
科研通“疑难数据库(出版商)”最低求助积分说明 734269