硫黄
催化作用
析氧
化学
杂原子
分解水
组合化学
无机化学
光化学
材料科学
有机化学
物理化学
电化学
电极
光催化
戒指(化学)
作者
Yonggui Zhao,Wenchao Wan,Nanchen Dongfang,Carlos A. Triana,Lewis Douls,Chong Huang,Rolf Erni,Marcella Iannuzzi,Greta R. Patzke
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-09-07
卷期号:16 (9): 15318-15327
被引量:21
标识
DOI:10.1021/acsnano.2c06890
摘要
In-depth insights into the structure-activity relationships and complex reaction mechanisms of oxygen evolution reaction (OER) electrocatalysts are indispensable to efficiently generate clean hydrogen through water electrolysis. We introduce a convenient and effective sulfur heteroatom tuning strategy to optimize the performance of active Ni and Fe centers embedded into coordination polymer (CP) catalysts. Operando monitoring then provided the mechanistic understanding as to how exactly our facile sulfur engineering of Ni/Fe-CPs optimizes the local electronic structure of their active centers to facilitate dioxygen formation. The high OER activity of our optimized S-R-NiFe-CPs outperforms the most recent NiFe-based OER electrocatalysts. Specifically, we start from oxygen-deprived Od-R-NiFe-CPs and transform them into highly active Ni/Fe-CPs with tailored sulfur coordination environments and anionic deficiencies. Our operando X-ray absorption spectroscopy analyses reveal that sulfur introduction into our designed S-R-NiFe-CPs facilitates the formation of crucial highly oxidized Ni4+ and Fe4+ species, which generate oxygen-bridged NiIV-O-FeIV moieties that act as the true OER active intermediates. The advantage of our sulfur-doping strategy for enhanced OER is evident from comparison with sulfur-free Od-R-NiFe-CPs, where the formation of essential high-valent OER intermediates is hindered. Moreover, we propose a dual-site mechanism pathway, which is backed up with a combination of pH-dependent performance data and DFT calculations. Computational results support the benefits of sulfur modulation, where a lower energy barrier enables O-O bond formation atop the S-NiIV-O-FeIV-O moieties. Our convenient anionic tuning strategy facilitates the formation of active oxygen-bridged metal motifs and can thus promote the design of flexible and low-cost OER electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI