FIP: A fast overlapping community-based influence maximization algorithm using probability coefficient of global diffusion in social networks

计算机科学 扩散 最大化 集合(抽象数据类型) 理论(学习稳定性) 选择(遗传算法) 过程(计算) 算法 群落结构 空格(标点符号) 复杂网络 数据挖掘 数学优化 机器学习 统计 数学 热力学 物理 操作系统 万维网 程序设计语言
作者
Asgarali Bouyer,Hamid Ahmadi Beni,Bahman Arasteh,Zahra Aghaee,Reza Ghanbarzadeh
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 118869-118869 被引量:32
标识
DOI:10.1016/j.eswa.2022.118869
摘要

Influence maximization is the process of identifying a small set of influential nodes from a complex network to maximize the number of activation nodes. Due to the critical issues such as accuracy, stability, and time complexity in selecting the seed set, many studies and algorithms has been proposed in recent decade. However, most of the influence maximization algorithms run into major challenges such as the lack of optimal seed nodes selection, unsuitable influence spread, and high time complexity. In this paper intends to solve the mentioned challenges, by decreasing the search space to reduce the time complexity. Furthermore, It selects the seed nodes with more optimal influence spread concerning the characteristics of a community structure, diffusion capability of overlapped and hub nodes within and between communities, and the probability coefficient of global diffusion. The proposed algorithm, called the FIP algorithm, primarily detects the overlapping communities, weighs the communities, and analyzes the emotional relationships of the community’s nodes. Moreover, the search space for choosing the seed nodes is limited by removing insignificant communities. Then, the candidate nodes are generated using the effect of the probability of global diffusion. Finally, the role of important nodes and the diffusion impact of overlapping nodes in the communities are measured to select the final seed nodes. Experimental results in real-world and synthetic networks indicate that the proposed FIP algorithm has significantly outperformed other algorithms in terms of efficiency and runtime.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坚强亦丝应助隐形机器猫采纳,获得10
1秒前
小马甲应助SCI采纳,获得10
2秒前
老疯智发布了新的文献求助10
2秒前
sweetbearm应助通~采纳,获得10
2秒前
神凰完成签到,获得积分10
2秒前
Z小姐发布了新的文献求助10
3秒前
NexusExplorer应助白泽采纳,获得10
3秒前
4秒前
4秒前
火星上妙梦完成签到 ,获得积分10
4秒前
赘婿应助mayungui采纳,获得10
4秒前
贾不可发布了新的文献求助10
5秒前
英俊梦槐发布了新的文献求助30
5秒前
Xu完成签到,获得积分10
6秒前
6秒前
秀丽千山完成签到,获得积分10
6秒前
7秒前
8秒前
哈哈哈哈完成签到,获得积分10
8秒前
沧海泪发布了新的文献求助10
9秒前
小胡先森应助凤凰山采纳,获得10
9秒前
一一完成签到,获得积分10
9秒前
惠惠发布了新的文献求助10
9秒前
shotgod完成签到,获得积分20
10秒前
科研通AI5应助蕾子采纳,获得10
10秒前
happy杨完成签到 ,获得积分10
10秒前
lichaoyes发布了新的文献求助10
10秒前
10秒前
Owen应助通~采纳,获得10
10秒前
封闭货车发布了新的文献求助10
11秒前
11秒前
www发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
13秒前
shotgod发布了新的文献求助10
13秒前
ling玲完成签到,获得积分10
13秒前
奔奔发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794