Spatially confined building of environmental-adaptive hydrogel electrolyte for supercapacitors

电解质 超级电容器 材料科学 化学工程 纳米技术 电极 环境科学 化学 电化学 工程类 物理化学
作者
Leyi Yang,Guanbing Zhou,Yijie Jin,Yan Sun,Qiao Liu,Chongyi Chen
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:548: 232015-232015 被引量:15
标识
DOI:10.1016/j.jpowsour.2022.232015
摘要

Developing hydrogel electrolytes combining enhanced ionic conductivity, great electrolyte/electrode interfacial contact and high electrochemical stability represents the basic demand of flexible electronic devices for cryogenic applications, but is still a formidable challenge at present. Herein, inspired by the antifreeze mechanism of antifreeze proteins (AFP), we developed a facile spatially confined strategy to stabilize water in molecular level so as to prevent freezing meanwhile maintain other critical features of hydrogels at subzero temperature. Meriting from unique AFP-mimetic structure, the polyacrylic acid-DMSO hydrogel prepared by rapid one-pot photo-polymerization embodies merits of excellent flexibility, large ionic conductivity, and strong interfacial adhesiveness with almost all types of surfaces at temperature down to −40 °C. As-assembled supercapacitor delivers remarkable specific capacitance of 73 F g −1 at −40 °C (∼70% of the capacitance at 20 °C), 84.5% of capacitance retention after 5000 charge-discharge cycles at −40 °C, and 85.8% of capacitance retention after 1000 cycles at an extreme bending angle of 180° and −40 °C, evidently manifesting high efficiency/stability toward cyclic charge-discharge operation and structure deformation in cold climates. It is believed that this work will play an exemplary role in designing anti-freezing hydrogel electrolytes for reliable, flexible electronic devices working at extremely cold environments. • A spatially confined strategy was developed to obtain anti-freezing hydrogel. • Excellent ionic conductivity and interfacial adhesion of hydrogel at −40 °C. • High efficiency and reliability of flexible electronic device working at −40 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Poyd完成签到,获得积分10
2秒前
2秒前
故意的傲玉应助tao_blue采纳,获得10
3秒前
3秒前
kid1912完成签到,获得积分0
3秒前
小马甲应助一网小海蜇采纳,获得10
6秒前
专一的笑阳完成签到 ,获得积分10
6秒前
xuesensu完成签到 ,获得积分10
10秒前
豌豆完成签到,获得积分10
11秒前
M先生完成签到,获得积分10
11秒前
12秒前
14秒前
科研通AI5应助sun采纳,获得10
14秒前
shitzu完成签到 ,获得积分10
15秒前
choco发布了新的文献求助10
17秒前
18秒前
李健的小迷弟应助sun采纳,获得10
18秒前
Jzhang应助liyuchen采纳,获得10
18秒前
魏伯安发布了新的文献求助30
18秒前
jjjjjj发布了新的文献求助30
20秒前
21秒前
伯赏诗霜发布了新的文献求助10
21秒前
糟糕的鹏飞完成签到 ,获得积分10
22秒前
22秒前
欢呼凡旋完成签到,获得积分10
23秒前
韩邹光完成签到,获得积分10
25秒前
xg发布了新的文献求助10
25秒前
26秒前
dktrrrr完成签到,获得积分10
26秒前
季生完成签到,获得积分10
29秒前
徐徐完成签到,获得积分10
29秒前
30秒前
30秒前
haku完成签到,获得积分10
32秒前
可爱的函函应助laodie采纳,获得10
34秒前
Singularity应助忆楠采纳,获得10
35秒前
36秒前
请叫我风吹麦浪应助PengHu采纳,获得30
37秒前
jjjjjj完成签到,获得积分10
37秒前
凝子老师发布了新的文献求助10
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849