纳米复合材料
材料科学
甲基橙
热重分析
傅里叶变换红外光谱
水溶液
吸附
化学工程
阳离子聚合
水溶液中的金属离子
核化学
纳米技术
有机化学
化学
金属
光催化
高分子化学
催化作用
工程类
冶金
作者
Khalil M. A. Qasem,Shabnam Khan,Sampath Chinnam,Hatem A. M. Saleh,I. Mantasha,Mohd Zeeshan,Yahiya Kadaf Manea,M. Shahid
标识
DOI:10.1016/j.matchemphys.2022.126748
摘要
In view of the fascinating applications of hybrid materials, a new nanocomposite is fabricated in order to achieve the excellent adsorption capacity for cationic dye as well as selective sensing ability toward Cr6+ ions in the aqueous phase. The present work deals with the synthesis of metal-organic framework (MOF) based nanocomposite, i.e., [email protected] using Co-MOF and functionalized carbon nanotubes (CNTs) by adopting a facile, in-situ solvothermal approach for application in the field of wastewater treatment. The as-synthesized nanocomposite was characterized in detail through Fourier transform infrared spectroscopy (FTIR), Raman, powder X-ray diffraction (PXRD), thermal gravimetric analysis/differential thermal analysis (TGA/DTA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques, revealing the successful fabrication of both parent materials in the hybrid nanocomposite. The developed nanocomposite ([email protected]) was assessed for its application in metal sensing as well as for the selective adsorption and elimination of hazardous cationic dyes [from the mixture containing cationic dye, methylene blue (MB) and anionic dye, methyl orange (MO)] from wastewater. The nanocomposite exhibits high selectivity and metal-sensing response towards Cr6+ ion under ambient conditions with an ultra-low detection limit of ∼0.00649 ppm or 0.125 μM, as reported so far. Moreover, the detection ability of [email protected] can be restored for up to five cycles significantly. In addition, the developed nanocomposite displayed a high removal rate of about 98% at equilibrium under optimum temperature (25 °C) and neutral pH for cationic (MB) dye with ultimate selectivity. The kinetic studies revealed that the adsorption proceeds via pseudo-second order reaction. The dye adsorption mechanism suggests the presence of electrostatic, ᴫ-ᴫ and hydrogen bonding interactions between nanocomposite and the dye. This hybrid nanocomposite also exhibited high reusability of up to four cycles for MB dye. All in all, [email protected] nanocomposite with superior Cr6+ metal sensing performance and MB dye adsorption could pave a promising path for environmental applications in this high-tech industrial era.
科研通智能强力驱动
Strongly Powered by AbleSci AI