Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: a prospective non-randomised interventional trial

心房颤动 医学 窦性心律 内科学 正常窦性心律 随机对照试验 心脏病学 节奏 心电图
作者
Peter A. Noseworthy,Zachi I. Attia,Emma Behnken,Rachel Giblon,Katherine A. Bews,Sijia Liu,Tara A Gosse,Zachery D Linn,Yihong Deng,Jun Yin,Bernard J. Gersh,Jonathan Graff‐Radford,Alejandro A. Rabinstein,Konstantinos C. Siontis,Paul A. Friedman,Xiaoxi Yao
出处
期刊:The Lancet [Elsevier]
卷期号:400 (10359): 1206-1212 被引量:123
标识
DOI:10.1016/s0140-6736(22)01637-3
摘要

Summary

Background

Previous atrial fibrillation screening trials have highlighted the need for more targeted approaches. We did a pragmatic study to evaluate the effectiveness of an artificial intelligence (AI) algorithm-guided targeted screening approach for identifying previously unrecognised atrial fibrillation.

Methods

For this non-randomised interventional trial, we prospectively recruited patients with stroke risk factors but with no known atrial fibrillation who had an electrocardiogram (ECG) done in routine practice. Participants wore a continuous ambulatory heart rhythm monitor for up to 30 days, with the data transmitted in near real time through a cellular connection. The AI algorithm was applied to the ECGs to divide patients into high-risk or low-risk groups. The primary outcome was newly diagnosed atrial fibrillation. In a secondary analysis, trial participants were propensity-score matched (1:1) to individuals from the eligible but unenrolled population who served as real-world controls. This study is registered with ClinicalTrials.gov, NCT04208971.

Findings

1003 patients with a mean age of 74 years (SD 8·8) from 40 US states completed the study. Over a mean 22·3 days of continuous monitoring, atrial fibrillation was detected in six (1·6%) of 370 patients with low risk and 48 (7·6%) of 633 with high risk (odds ratio 4·98, 95% CI 2·11–11·75, p=0·0002). Compared with usual care, AI-guided screening was associated with increased detection of atrial fibrillation (high-risk group: 3·6% [95% CI 2·3–5·4] with usual care vs 10·6% [8·3–13·2] with AI-guided screening, p<0·0001; low-risk group: 0·9% vs 2·4%, p=0·12) over a median follow-up of 9·9 months (IQR 7·1–11·0).

Interpretation

An AI-guided targeted screening approach that leverages existing clinical data increased the yield for atrial fibrillation detection and could improve the effectiveness of atrial fibrillation screening.

Funding

Mayo Clinic Robert D and Patricia E Kern Center for the Science of Health Care Delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kydd驳回了桐桐应助
刚刚
1秒前
1秒前
1秒前
英俊的铭应助洛尚采纳,获得10
1秒前
2秒前
在水一方应助Harlotte采纳,获得10
2秒前
廖天佑完成签到,获得积分0
2秒前
SweepingMonk应助梁小鑫采纳,获得10
2秒前
DTBTY完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
JACK发布了新的文献求助10
4秒前
小宋同学不能怂完成签到 ,获得积分10
4秒前
Peng丶Young完成签到,获得积分10
4秒前
4秒前
学术新星完成签到,获得积分10
4秒前
传奇3应助欢欢采纳,获得10
5秒前
littlewhite发布了新的文献求助30
5秒前
木子发布了新的文献求助10
5秒前
5秒前
NiLou完成签到,获得积分10
5秒前
沉静的颦发布了新的文献求助10
6秒前
6秒前
yier完成签到,获得积分10
8秒前
8秒前
凉茗余香完成签到 ,获得积分10
9秒前
蜡笔小猪发布了新的文献求助10
9秒前
超级蘑菇关注了科研通微信公众号
9秒前
滴滴完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
执着的怜寒完成签到,获得积分10
11秒前
伍六七完成签到 ,获得积分10
11秒前
诸觅双完成签到 ,获得积分10
11秒前
无花果应助wbgwudi采纳,获得30
13秒前
zhangyuheng完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740