Conversion Between CT and MRI Images Using Diffusion and Score-Matching Models

计算机科学 人工智能 背景(考古学) 卷积神经网络 匹配(统计) 模态(人机交互) 深度学习 蒙特卡罗方法 医学影像学 磁共振弥散成像 水准点(测量) 图像质量 模式识别(心理学) 计算机视觉 图像(数学) 磁共振成像 放射科 数学 医学 统计 古生物学 大地测量学 生物 地理
作者
Qing Lyu,Ge Wang
出处
期刊:Cornell University - arXiv 被引量:26
标识
DOI:10.48550/arxiv.2209.12104
摘要

MRI and CT are most widely used medical imaging modalities. It is often necessary to acquire multi-modality images for diagnosis and treatment such as radiotherapy planning. However, multi-modality imaging is not only costly but also introduces misalignment between MRI and CT images. To address this challenge, computational conversion is a viable approach between MRI and CT images, especially from MRI to CT images. In this paper, we propose to use an emerging deep learning framework called diffusion and score-matching models in this context. Specifically, we adapt denoising diffusion probabilistic and score-matching models, use four different sampling strategies, and compare their performance metrics with that using a convolutional neural network and a generative adversarial network model. Our results show that the diffusion and score-matching models generate better synthetic CT images than the CNN and GAN models. Furthermore, we investigate the uncertainties associated with the diffusion and score-matching networks using the Monte-Carlo method, and improve the results by averaging their Monte-Carlo outputs. Our study suggests that diffusion and score-matching models are powerful to generate high quality images conditioned on an image obtained using a complementary imaging modality, analytically rigorous with clear explainability, and highly competitive with CNNs and GANs for image synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
FFFFFFF应助晓军采纳,获得10
1秒前
wanci应助艺玲采纳,获得10
1秒前
jfc完成签到 ,获得积分10
1秒前
香蕉觅云应助月白采纳,获得10
1秒前
思源应助mmx采纳,获得10
1秒前
Diaory2023完成签到 ,获得积分0
1秒前
雪小岳完成签到,获得积分10
2秒前
李小明完成签到,获得积分10
2秒前
2秒前
白小白发布了新的文献求助10
3秒前
thchiang发布了新的文献求助30
3秒前
Crsip关注了科研通微信公众号
3秒前
乐乐应助camellia采纳,获得10
4秒前
小二郎应助无情的白桃采纳,获得10
4秒前
4秒前
研友_Zb1rln完成签到,获得积分10
6秒前
健身boy完成签到,获得积分10
6秒前
盛京烟雨行完成签到 ,获得积分10
6秒前
6秒前
心灵美的大山完成签到,获得积分10
6秒前
6秒前
yuan发布了新的文献求助10
7秒前
诚心八宝粥完成签到,获得积分10
7秒前
8秒前
艺术家完成签到 ,获得积分10
9秒前
9秒前
9秒前
DreamMaker完成签到 ,获得积分10
9秒前
自由完成签到 ,获得积分10
9秒前
请勿继续发布了新的文献求助10
9秒前
聪明宛菡完成签到 ,获得积分10
10秒前
搜集达人应助木子采纳,获得10
11秒前
英姑应助伊丽莎白打工采纳,获得10
11秒前
12秒前
李浓发布了新的文献求助10
12秒前
长情绿凝完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759