A self-adaptive gradient-based particle swarm optimization algorithm with dynamic population topology

粒子群优化 计算机科学 多群优化 拓扑(电路) 数学优化 算法 数学 组合数学
作者
Daren Zhang,Gang Ma,Zhuoran Deng,Qiao Wang,Guike Zhang,Wei Zhou
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:130: 109660-109660 被引量:2
标识
DOI:10.1016/j.asoc.2022.109660
摘要

The aggregation of individuals facilitates local information exchange, and the migration of individuals from one population to another leads to a dynamic community structure. In addition, the negative feedback regulation mechanism of organisms helps them in good living conditions. Based on the above knowledge, a novel particle swarm optimization algorithm with a self-organizing topology structure and self-adaptive adjustable parameters is proposed (KGPSO). During the optimization process, the K-Means clustering method periodically divides the particle swarm into multiple distance-based sub-swarms, and the optimal number of sub-swarms is determined by maximizing the Calinski-Harabasz index. This strategy helps maintain the population diversity and gives particles the ability to perceive the surrounding environment. The parameters used to update the particle velocity are adjusted based on the gradient descent of its fitness error, ensuring a dynamic balance between exploration and exploitation. The hyperparameters of KGPSO are tuned by Bayesian optimization method to improve the algorithm performance further. Two benchmark suites are used to evaluate the performance of KGPSO. Both ranking results and Wilcoxon signed-rank tests show that KGPSO performs best among the PSO algorithms tested. Moreover, the excellent optimization capability of KGPSO are proven in the process of X-ray CT image enhancement, making it possible to analyze the structure and motion of heterogeneous granular materials efficiently and robustly. In conclusion, the proposed KGPSO can provide a stable and powerful support for the frontier experimental research of granular materials and expand the research scope. • Self-organizing topology and self-adaptive parameters are used to balance the exploration and exploitation. • Clustering algorithm and Calinski-Harabasz index are used to control the dynamic generation of sub-swarms. • Bayesian optimization method is used to enhance the performance of KGPSO. • KGPSO is applied to X-ray CT image enhancement of heterogeneous particles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黄油发布了新的文献求助10
刚刚
张i鹅完成签到,获得积分10
刚刚
淡然的天佑完成签到,获得积分10
刚刚
1秒前
1秒前
困困发布了新的文献求助10
1秒前
Danielle完成签到,获得积分10
2秒前
00发布了新的文献求助10
2秒前
lalala发布了新的文献求助10
2秒前
Xu发布了新的文献求助10
3秒前
3秒前
佳佳发布了新的文献求助10
3秒前
wangxuan完成签到,获得积分10
3秒前
sunyuan发布了新的文献求助10
3秒前
Sci完成签到,获得积分10
4秒前
冬至完成签到,获得积分10
4秒前
4秒前
夏侯觅风完成签到,获得积分10
5秒前
5秒前
Simone驳回了Akim应助
5秒前
luqianling完成签到 ,获得积分10
6秒前
温瞳完成签到,获得积分10
6秒前
九月鹰飞发布了新的文献求助10
7秒前
土豆丝完成签到 ,获得积分10
7秒前
JamesPei应助吴中秋采纳,获得10
8秒前
xyzdmmm完成签到,获得积分10
9秒前
chunchun完成签到,获得积分10
9秒前
无奈的惜蕊完成签到,获得积分10
9秒前
夏侯觅风发布了新的文献求助10
9秒前
lzhgoashore完成签到,获得积分10
10秒前
迷路的翠容完成签到,获得积分10
10秒前
LHL完成签到,获得积分10
10秒前
10秒前
zy完成签到,获得积分10
10秒前
focus完成签到 ,获得积分10
11秒前
轰车车发布了新的文献求助10
11秒前
坚强的迎天完成签到,获得积分10
11秒前
高挑的棕色蛟龙完成签到,获得积分10
11秒前
缓慢的高山完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977