A self-adaptive gradient-based particle swarm optimization algorithm with dynamic population topology

粒子群优化 计算机科学 多群优化 拓扑(电路) 数学优化 算法 数学 组合数学
作者
Daren Zhang,Gang Ma,Zhuoran Deng,Qiao Wang,Guike Zhang,Wei Zhou
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:130: 109660-109660 被引量:2
标识
DOI:10.1016/j.asoc.2022.109660
摘要

The aggregation of individuals facilitates local information exchange, and the migration of individuals from one population to another leads to a dynamic community structure. In addition, the negative feedback regulation mechanism of organisms helps them in good living conditions. Based on the above knowledge, a novel particle swarm optimization algorithm with a self-organizing topology structure and self-adaptive adjustable parameters is proposed (KGPSO). During the optimization process, the K-Means clustering method periodically divides the particle swarm into multiple distance-based sub-swarms, and the optimal number of sub-swarms is determined by maximizing the Calinski-Harabasz index. This strategy helps maintain the population diversity and gives particles the ability to perceive the surrounding environment. The parameters used to update the particle velocity are adjusted based on the gradient descent of its fitness error, ensuring a dynamic balance between exploration and exploitation. The hyperparameters of KGPSO are tuned by Bayesian optimization method to improve the algorithm performance further. Two benchmark suites are used to evaluate the performance of KGPSO. Both ranking results and Wilcoxon signed-rank tests show that KGPSO performs best among the PSO algorithms tested. Moreover, the excellent optimization capability of KGPSO are proven in the process of X-ray CT image enhancement, making it possible to analyze the structure and motion of heterogeneous granular materials efficiently and robustly. In conclusion, the proposed KGPSO can provide a stable and powerful support for the frontier experimental research of granular materials and expand the research scope. • Self-organizing topology and self-adaptive parameters are used to balance the exploration and exploitation. • Clustering algorithm and Calinski-Harabasz index are used to control the dynamic generation of sub-swarms. • Bayesian optimization method is used to enhance the performance of KGPSO. • KGPSO is applied to X-ray CT image enhancement of heterogeneous particles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻元风完成签到 ,获得积分10
2秒前
xybjt完成签到 ,获得积分10
5秒前
巴达天使完成签到,获得积分10
11秒前
江三村完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
29秒前
CyberHamster完成签到,获得积分10
39秒前
xiaohong完成签到,获得积分10
42秒前
朱比特完成签到,获得积分10
43秒前
44秒前
zmuzhang2019发布了新的文献求助10
50秒前
onestepcloser完成签到 ,获得积分0
50秒前
zoe完成签到 ,获得积分10
51秒前
发嗲的慕蕊完成签到 ,获得积分10
52秒前
Linson完成签到,获得积分10
53秒前
顾矜应助赵三岁采纳,获得10
1分钟前
yyy2025完成签到,获得积分10
1分钟前
木雨亦潇潇完成签到,获得积分10
1分钟前
香蕉觅云应助nine2652采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
芳华如梦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
土豆丝完成签到 ,获得积分10
1分钟前
琦琦完成签到,获得积分10
1分钟前
zzzz完成签到,获得积分20
1分钟前
GEZIKU完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
赵三岁发布了新的文献求助10
2分钟前
wwb完成签到,获得积分10
2分钟前
2分钟前
2分钟前
肯德基没有黄焖鸡完成签到 ,获得积分10
2分钟前
能干冰露完成签到,获得积分10
2分钟前
牛奶拌可乐完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
周小鱼完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022