A self-adaptive gradient-based particle swarm optimization algorithm with dynamic population topology

粒子群优化 计算机科学 多群优化 拓扑(电路) 数学优化 算法 数学 组合数学
作者
Daren Zhang,Gang Ma,Zhuoran Deng,Qiao Wang,Guike Zhang,Wei Zhou
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:130: 109660-109660 被引量:2
标识
DOI:10.1016/j.asoc.2022.109660
摘要

The aggregation of individuals facilitates local information exchange, and the migration of individuals from one population to another leads to a dynamic community structure. In addition, the negative feedback regulation mechanism of organisms helps them in good living conditions. Based on the above knowledge, a novel particle swarm optimization algorithm with a self-organizing topology structure and self-adaptive adjustable parameters is proposed (KGPSO). During the optimization process, the K-Means clustering method periodically divides the particle swarm into multiple distance-based sub-swarms, and the optimal number of sub-swarms is determined by maximizing the Calinski-Harabasz index. This strategy helps maintain the population diversity and gives particles the ability to perceive the surrounding environment. The parameters used to update the particle velocity are adjusted based on the gradient descent of its fitness error, ensuring a dynamic balance between exploration and exploitation. The hyperparameters of KGPSO are tuned by Bayesian optimization method to improve the algorithm performance further. Two benchmark suites are used to evaluate the performance of KGPSO. Both ranking results and Wilcoxon signed-rank tests show that KGPSO performs best among the PSO algorithms tested. Moreover, the excellent optimization capability of KGPSO are proven in the process of X-ray CT image enhancement, making it possible to analyze the structure and motion of heterogeneous granular materials efficiently and robustly. In conclusion, the proposed KGPSO can provide a stable and powerful support for the frontier experimental research of granular materials and expand the research scope. • Self-organizing topology and self-adaptive parameters are used to balance the exploration and exploitation. • Clustering algorithm and Calinski-Harabasz index are used to control the dynamic generation of sub-swarms. • Bayesian optimization method is used to enhance the performance of KGPSO. • KGPSO is applied to X-ray CT image enhancement of heterogeneous particles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
quhayley应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得30
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得50
1秒前
1秒前
1秒前
2秒前
陈曦发布了新的文献求助10
2秒前
2秒前
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
2秒前
SYLH应助科研通管家采纳,获得20
2秒前
Atan完成签到,获得积分10
3秒前
Kevin发布了新的文献求助10
3秒前
3秒前
3秒前
有点灰发布了新的文献求助30
4秒前
WP发布了新的文献求助10
4秒前
6秒前
慕青应助mariawang采纳,获得10
7秒前
秀丽的芷珍完成签到 ,获得积分10
7秒前
桐桐应助maomao采纳,获得10
7秒前
7秒前
ding应助HH采纳,获得30
8秒前
小任一定行完成签到,获得积分20
9秒前
LeafJin完成签到 ,获得积分10
10秒前
陶醉无敌发布了新的文献求助10
10秒前
刻苦冷菱发布了新的文献求助10
10秒前
平淡的翠霜完成签到,获得积分10
12秒前
任峰发布了新的文献求助10
13秒前
make217完成签到 ,获得积分10
15秒前
Lee发布了新的文献求助10
16秒前
满意的妙海完成签到 ,获得积分10
16秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021