分子印迹聚合物
金丝桃苷
检出限
材料科学
胶体金
分子印迹
电化学气体传感器
聚合物
电极
选择性
化学工程
电化学
化学
纳米颗粒
纳米技术
色谱法
有机化学
物理化学
芦丁
抗氧化剂
催化作用
复合材料
工程类
作者
Bolu Sun,Dan Wu,Lin Yang,Huanzhi Shi,Chengyang Gao,Lei Kan,Jingxue Wan,Qinghua Ma,Xiaofeng Shi
出处
期刊:ECS advances
[The Electrochemical Society]
日期:2022-10-17
卷期号:1 (4): 046503-046503
标识
DOI:10.1149/2754-2734/ac948c
摘要
Establishing a high-selectivity and rapid detection technology for trace index components in complex samples is of great significance for real-time and on-site drug quality evaluation. In this study, a molecularly imprinted electrochemical sensor with highly selective recognition and detection of trace hyperoside was prepared using chitosan functionalized Nitrogen-doped graphene composite coated with gold nanoparticles (AuNPs/N-GR@CS) as electrode substrate modification material, and the deposition of AuNPs further improved the conductivity of the modified electrode. With the aid of molecular imprinting technology, polymer films with high selectivity and identification of hyperoside were successfully prepared on glassy carbon electrodes (GCE) by self-assembly using hyperoside as template molecule and acrylamide as functional monomer. Because the acrylamide can accept protons through the olefinic double bond and firmly polymerize with each other, while it binds with hyperoside through hydrogen bonds. Therefore, the hyperoside can be easily dissociated in the eluate, which offers a condition for formating a molecularly imprinted polymer film to highly select hyperoside. The highly conductive N-GR@CS modified at the bottom of the polymer film provides the possibility to electrocatalyze hyperoside, and facilitate electron transfer to amplify the response signal. Under the optimized experimental conditions, the sensor showed a detection limit was 6.42 × 10 −8 mol l −1 (S/N = 3) with a good linear relationship in the range of 2.15 × 10 −7 to 2.15 × 10 −5 mol l −1 . Moreover, it displayed good reproducibility and stability, and could realize the direct and highly selective detection of trace hyperoside in complex samples. In consequence, this study is expected to provide a convenient and reliable method for on-site real-time evaluation of traditional Chinese medicine (TCM) quality with reference to the index components.
科研通智能强力驱动
Strongly Powered by AbleSci AI