A machine learning approach for identification of vascular access patency in hemodialysis patients using photoplethysmography: A pilot study

光容积图 血液透析 支持向量机 人工智能 计算机科学 机器学习 动静脉瘘 可穿戴计算机 医学 内科学 外科 计算机视觉 滤波器(信号处理) 嵌入式系统
作者
Po-Kai Yang,Danyal Shahmirzadi,Hong-Xu Zhuo,Chuan‐Yu Chang,Chin‐Chung Tseng,Ming‐Long Yeh,Wen-Fong Wang
出处
期刊:Journal of Vascular Access [SAGE]
标识
DOI:10.1177/11297298241304467
摘要

Introduction: Vascular access (VA) is essential for patients with hemodialysis, and its dysfunction is a major complication that can reduce quality of life or even threaten life. VA patency is not only difficult to predict on an individual basis, but also challenging to predict in real-time. To overcome this challenge, this study aimed to develop a machine learning approach to predict 6-month primary patency (PP) using photoplethysmography (PPG) signals acquired from the tips of both index fingers. Materials and methods: PPG signals were obtained from hemodialysis patients who received an arteriovenous fistula or an arteriovenous graft as primary VA in a single center from April 2023 to December 2023. With PPG wearables, we propose a method that can efficiently and quickly generate the morphological features of the PPG signal to recognize different groups of patients. For the generated features, an independent sample t-test was used to evaluate their effectiveness for machine learning. Then, two supervised learning algorithms, k-nearest neighbors (kNN) and support vector machine (SVM), are used further to identify VA patency in advance. Results: The study involved 31 patients, of whom 14 had 6-month PP, while 17 did not. Using the kNN algorithm, machine learning classified patients into two groups with 82% precision based on PPG signals, while the SVM algorithm showed a precision of 82%. Conclusions: Our approach can provide reliable classifications for VA patency. It is effective to use the proposed PPG signal features to predict 6-month PP of VA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen发布了新的文献求助10
刚刚
刚刚
青wu发布了新的文献求助10
1秒前
a龙完成签到,获得积分10
1秒前
眯眯眼的老鼠完成签到,获得积分20
1秒前
无花果应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
2秒前
wanci应助嗯哼采纳,获得10
2秒前
nanan完成签到,获得积分10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
Hungrylunch应助科研通管家采纳,获得20
2秒前
Cassie应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
暴躁四叔应助科研通管家采纳,获得20
2秒前
Zn应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
Zn应助科研通管家采纳,获得10
3秒前
3秒前
AN应助科研通管家采纳,获得10
3秒前
3秒前
控制小弟应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
自由寻梅发布了新的文献求助30
4秒前
冰西瓜最棒_完成签到,获得积分10
4秒前
古怪小枫完成签到,获得积分10
5秒前
TiAmo完成签到 ,获得积分10
5秒前
康佳璐发布了新的文献求助10
6秒前
6秒前
Camellia完成签到 ,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672