Spatial-Mamba: Effective Visual State Space Models via Structure-Aware State Fusion

空格(标点符号) 融合 国家(计算机科学) 计算机科学 地理 计算机视觉 算法 语言学 操作系统 哲学
作者
Chijie Xiao,Minghan Li,Zhengqiang Zhang,Deyu Meng,Lei Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.15091
摘要

Selective state space models (SSMs), such as Mamba, highly excel at capturing long-range dependencies in 1D sequential data, while their applications to 2D vision tasks still face challenges. Current visual SSMs often convert images into 1D sequences and employ various scanning patterns to incorporate local spatial dependencies. However, these methods are limited in effectively capturing the complex image spatial structures and the increased computational cost caused by the lengthened scanning paths. To address these limitations, we propose Spatial-Mamba, a novel approach that establishes neighborhood connectivity directly in the state space. Instead of relying solely on sequential state transitions, we introduce a structure-aware state fusion equation, which leverages dilated convolutions to capture image spatial structural dependencies, significantly enhancing the flow of visual contextual information. Spatial-Mamba proceeds in three stages: initial state computation in a unidirectional scan, spatial context acquisition through structure-aware state fusion, and final state computation using the observation equation. Our theoretical analysis shows that Spatial-Mamba unifies the original Mamba and linear attention under the same matrix multiplication framework, providing a deeper understanding of our method. Experimental results demonstrate that Spatial-Mamba, even with a single scan, attains or surpasses the state-of-the-art SSM-based models in image classification, detection and segmentation. Source codes and trained models can be found at $\href{https://github.com/EdwardChasel/Spatial-Mamba}{\text{this https URL}}$.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Docsiwen发布了新的文献求助10
刚刚
小葡萄完成签到 ,获得积分10
1秒前
懒羊羊完成签到,获得积分10
1秒前
吴雨峰完成签到,获得积分10
1秒前
Eric800824完成签到 ,获得积分10
1秒前
qwq完成签到,获得积分20
1秒前
茄子肉末先生完成签到 ,获得积分10
1秒前
yhc发布了新的文献求助10
1秒前
nuo完成签到 ,获得积分10
1秒前
英俊芷完成签到 ,获得积分10
1秒前
zzz发布了新的文献求助10
1秒前
在水一方应助segovia_tju采纳,获得10
2秒前
2秒前
xy完成签到 ,获得积分10
2秒前
洁净灵松完成签到 ,获得积分10
2秒前
Cong完成签到 ,获得积分10
2秒前
王SQ完成签到 ,获得积分10
3秒前
文章中中中完成签到 ,获得积分10
3秒前
南暮完成签到 ,获得积分10
3秒前
3秒前
qwq发布了新的文献求助10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
科研通AI5应助拼搏冷卉采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
思凡完成签到,获得积分10
4秒前
坚强的听筠完成签到,获得积分10
4秒前
研友_n0kYwL完成签到,获得积分10
4秒前
Elige完成签到 ,获得积分10
4秒前
yzh发布了新的文献求助10
4秒前
cyj完成签到 ,获得积分10
5秒前
小矿工完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
7秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662173
求助须知:如何正确求助?哪些是违规求助? 3223026
关于积分的说明 9749872
捐赠科研通 2932763
什么是DOI,文献DOI怎么找? 1605829
邀请新用户注册赠送积分活动 758174
科研通“疑难数据库(出版商)”最低求助积分说明 734727